

Available online at www.sciencedirect.com

Tetrahedron: Asymmetry 17 (2006) 1217-1237

Tetrahedron: *Asymmetry*

Stereoselective additions to the exocyclic C=C bond of some α-alkylidene-(+)-camphor derivatives

Uroš Grošelj, David Bevk, Renata Jakše, Anton Meden, Branko Stanovnik and Jurij Svete*

Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, PO Box 537, 1000 Ljubljana, Slovenia

Received 2 March 2006; accepted 3 April 2006

Abstract—Stereoselective additions to the exocyclic C=C double bond of some (1R,3E,4S)-3-alkylidene-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ones and (1R,4E,5S)-4-alkylidene-1,8,8-trimethyl-2-oxabicyclo[3.2.1]octan-3-ones were studied. All additions took place predominantly from the less hindered *endo*-face of the methylidene compounds to give the corresponding *exo*-adducts as the major isomers. Thus, catalytic hydrogenations afforded the α -alkylated (1R,3R,4R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ones and (1R,4R,5R)-1,8,8trimethyl-2-oxabicyclo[3.2.1]octan-3-ones in 28–100% de. Similarly, 1,3-dipolar cycloadditions of 2,4,6-trisubstituted benzonitrile oxides gave the corresponding spiro cycloadducts in 66–100% de. The structures were determined by 2D NMR techniques, NOESY spectroscopy and X–ray diffraction.

© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

(+)-Camphor 1 and its derivatives are among the most frequently employed types of ex-chiral pool starting materials, building blocks, ligands in various asymmetric reagents and/or catalysts, resolving agents and as shift reagents in NMR spectroscopy.^{1–4} In addition, many camphor derivatives are biologically active. For example, the reaction of 3-hydroxymethylidenecamphor⁵ with amines, followed by reduction of the exocyclic C=C double bond, leads to 3-aminomethylcamphor derivatives exhibiting local anesthetic and smooth muscle relaxant properties.^{6–8}

Recently, a series of alkyl 2-substituted 3-(dimethylamino)prop-2-enoates and alkyl 3-cyanoprop-2-enoates have been prepared as versatile reagents for the preparation of various heterocyclic systems.^{9–19} Chiral cyclic enamino lactams and lactones, derived from α -amino acids, have been employed in the synthesis of functionalised heterocycles, such as heteroarylalanines and their analogues and other related heterocyclic systems containing either an α -amino acid, dipeptide, β -amino alcohol, α -hydroxy acid or propane-1,2-diol structural element.^{9–12,18,19} Our studies on ex-chiral pool derived enaminones have recently been extended to the preparation and synthetic applications of two (+)-camphor derived enaminones, (1*R*,3*E*,4*S*)-3-[(dimethylamino)methylidene]-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one²¹ and (1*R*,4*E*,5*S*)-4-[(dimethylamino)methylidene]-1,8,8-trimethyl-2-oxabicyclo[3.2.1]octan-3-one.²² These two reagents were used in various synthetic applications, such as the stereoselective synthesis of α -([1,2,4]triazolo[4,3-*x*]azin-3-yl) substituted camphors²¹ and analogous compounds,^{23,24} in the synthesis of terpenefunctionalised pyrazoles,²⁵ in coupling reactions with amines²² and Grignard reagents,²⁶ and in the preparation and reductions of (1*R*,4*E*,5*S*)-4-oximino-1,8,8-trimethyl-2oxabicyclo[3.2.1]octan-3-one.²⁷ In a continuation of our work in this field, we herein report catalytic hydrogenations and 1,3-dipolar cycloadditions of stable benzonitrile oxides to (+)-camphor derived α -alkylidene compounds **4–8** and **11**.

2. Results and discussion

Starting enaminones 2^{21} and 3^{22} and α -alkylidene compounds 4b,c,h and 5^{26} were prepared from (1R)-(+)-camphor 1 according to literature procedures. Treatment of 2 with KCN and 2-methyl-1*H*-indole under acidic conditions afforded the corresponding dimethylamine substitution products, (E)-3-[(1R,4S)-1,7,7-trimethyl-2-oxobicy-clo[2.2.1]heptan-3-ylidene]acetonitrile 6^{28} and (1R,3E,4S)-1,7,7-trimethyl-3-[(2-methyl-1*H*-indol-3-yl)methylidene]-bicyclo[2.2.1]heptan-2-one 7 in 14% and 84% yield, respectively. According to the previously described reactions of

^{*} Corresponding author. Tel.: +386 1 2419 100; fax: +386 1 2419 220; e-mail: jurij.svete@fkkt.uni-lj.si

^{0957-4166/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2006.04.014

the enamino lactone 3,26 treatment of enamino ketone 2 with Grignard reagents also resulted in the stereoselective substitution of the dimethylamino group to give (E)- α alkylidene-(+)-camphors 8a,c-i in 51-95% yields. α-Benzylidene-(+)-camphors 8e-i were formed as pure (E)-isomers, while their α -alkylidene analogues **8a,c,d** were formed as mixtures of the major (E)-isomers 8a,c,d and the minor (Z)-isomers **8'a.c.d**. Upon chromatographic purification over silica gel, the (E)-isomers **8a,c,d** were obtained. In the same manner, compound ent-8h was prepared in two steps from (-)-camphor ent-1 via (1S,3E,4R)-3-[(dimethylamino)methylidene]-1,7,7-trimethvlbicvclo[2.2.1]heptan-2-one ent-2. It is noteworthy that the carbonyl group did not react, despite the presence of excess Grignard reagent. In contrast to the previously reported nitrosation of enamino lactone 3 with aqueous sodium nitrite in the presence of hydrochloric acid,²⁷ reaction of 3 with tert-butyl nitrite in anhydrous dichloromethane in the presence of CF₃COOH took place at the dimethylamino group and not at the exocyclic C=C double bond to give *N*-methyl-*N*-{[(1*R*,4*E*,5*S*)-1,8,8-trimethyl-3-oxo-2oxabicyclo[3.2.1]octan-4-ylidene]methyl}nitrous amide 11 in 50% yield. Although we do not have a firm mechanistic

explanation for this, rather unusual, nitroso-demethylation reaction, the reaction mechanism might involve migration of a methyl group from the nitrogen to the oxygen atom via a Stevens-type rearrangement. Presumably, the dimethylamino group undergoes addition to the in situ formed nitrous acid to give zwitterionic adduct 9, followed by $N \rightarrow O$ migration of a methyl group to form intermediate 10, from which elimination of methanol takes place to furnish *N*-methyl-*N*-nitrosoamino compound 11 (Scheme 1 and Table 1).

Next, catalytic hydrogenations of α -methylidene compounds **3**, **4b**, **7** and **11** in the presence of Pd–C under 50 bar of hydrogen were carried out. Hydrogenation of **3** in *n*-propanol at 60 °C gave (1*R*,4*R*,5*R*)-1,4,8,8-tetra-methyl-2-oxabicyclo[3.2.1]octan-3-one **13** in 83% yield and 28% de. Formation of compound **13** could be explained by initial hydrogenolytic removal of the dimethyl-amino group to give the α -methylidene intermediate **12**, followed by addition of hydrogen to the exocyclic C=C double bond. This proposed reaction mechanism is supported by a related transformation of ethyl 2-benzoyl-3-(dimethylamino)prop-2-enoate with sodium cyanoboro-

Scheme 1. Reagents and conditions: (i) bis(dimethylamino)-*tert*-butoxymethane (Bredereck's reagent), DMF, reflux; (ii) AcOOH, AcOH, AcONa, rt; (iii) bis(dimethylamino)-*tert*-butoxymethane (Bredereck's reagent), decalin, reflux; (iv) RMgX, THF, $-78 \degree C \rightarrow rt$; (v) KCN, AcOH, rt; (vi) 2-methyl-1*H*-indole, EtOH, HCl (1 equiv), reflux; (vii) *tert*-butyl nitrite, CH₂Cl₂, CF₃COOH, rt.

 Table 1. Experimental data for alkylidene compounds 4–8, 11 and 17

Compound	R	E:Z	Yield (%)
4b	Et	100:0 ^a	83 ^a
4c	<i>n</i> -Bu	100:0 ^a	68 ^a
4h	4-Fluorophenyl	100:0 ^a	64 ^a
5	_	100:0 ^a	49 ^a
6	_	100:0	14
7	_	100:0	84
8/8′a	Me	98:2 ^b	93°
8/8′c	<i>n</i> -Bu	95:5 ^b	95°
8/8′d	Cyclopentyl	85:15 ^b	51°
8e	Ph	100:0	91
8f	2-Methylphenyl	100:0	90
8g	4-Methylphenyl	100:0	93
8h	4-Fluorophenyl	100:0	91
ent-8h	4-Fluorophenyl	100:0	96
8i	3,5-Bis(trifluoromethyl)phenyl	100:0	70
11	_	100:0	50
17/17′	_	73:27 ^d	97

^a Ref. 26.

^b E:Z ratio of the crude product. CC afforded pure (E)-isomer.

^c Yield of the pure (*E*)-isomer.

^d Upon crystallisation, the E:Z ratio changed to 95:5.

hydride into ethyl 2-benzoylpropanoate, reported previously.²⁹ Nevertheless, the loss of dimethylamino group was somewhat surprising, since the literature reported hydrogenation of the enamino ketone **2** resulted only in saturation of the C=C double bond.^{7,30} Hydrogenation of compound **4b** in ethanol at 50 °C yielded (1*R*,4*R*,5*R*)-1,8,8-trimethyl-4-propyl-2-oxabicyclo[3.2.1]octan-3-one **14** in 98% yield and 76% de. Crystallisation of this mixture of isomers **14** and **14'** furnished isomerically pure compound **14**. On the other hand, hydrogenation of **7** in ethanol at 50 °C was highly stereoselective and gave isomerically pure (1*R*,3*R*,4*R*)-3-[(2-methyl-1*H*-indol-3-yl)methyl]-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one **15** in 86% yield. Compound **15** turned out to be quite unstable and slowly decomposed, even when kept under argon and in the absence of light (Scheme 2 and Table 2).

Hydrogenation of compound 11 in *n*-propanol at 35 °C afforded a mixture of the major (1R,4E,5S)-1,8,8-trimethyl-4-[(methylamino)methylidene]-2-oxabicyclo[3.2.1]octan-3-one 17 and its minor (1R,4Z,5S)-isomer 17' in a ratio of 73:27 and in 97% yield. Subsequent crystallisation furnished a mixture of 17 and 17' in a ratio of 95:5. Formation of 17 and 17' may be due to initial reduction of the nitroso group to give the enehydrazine intermediate 16, followed by N–N bond fission, and partial E/Z-isomerisation of 17^{22} via the imino tautomeric form 17''. To our

Scheme 2. Reagents and conditions: (i) H₂ (50 bar), 10% Pd–C, EtOH or *n*-PrOH, 35–60 °C, 24–120 h.

Table 2. Selected exp	perimental data of	(cyclo)addition	products 13-15	and 19–24
-----------------------	--------------------	-----------------	----------------	-----------

Reaction	R	Reaction conditions	Yield (%)	De (%) ^a
$3 \rightarrow 13/13'$	_	H ₂ (50 bar), Pd–C, <i>n</i> -PrOH, 60 °C, 120 h	83	28
4b ightarrow 14/14'	_	H ₂ (50 bar), Pd-C, EtOH, 50 °C, 24 h	98	76
7 ightarrow 15		H ₂ (50 bar), Pd–C, EtOH, 50 °C, 24 h	86	100
$5 + \mathbf{18a} \rightarrow 19 + 20$		Toluene, reflux, 4 h	46 ^b	100°
$5 + \mathbf{18a} \rightarrow 19 + 20$		Toluene, 65 °C, 36 h	42 ^d	100 ^c
6+18a ightarrow21		Toluene, reflux, 5 h	40	_
$4b + 18a \rightarrow 22b$	Et	Decalin, reflux, 6 h	8	100
$4c + 18a \rightarrow 22c$	<i>n</i> -Bu	Decalin, reflux, 6 h	10	100
$4h{+}18a{}{\rightarrow}{}22h$	4-Fluorophenyl	Decalin, reflux, 6 h	49	76
$8a + 18a \rightarrow 23a$	Me	Anisole, 215 °C, MW, 3 h	27	84 ^e
$8c + 18a \rightarrow 23c$	<i>n</i> -Bu	Anisole, 215 °C, MW, 3 h	11	$100^{\rm e}$
$8e + 18a \rightarrow 23e$	Ph	Anisole, 215 °C, MW, 3 h	30	89
$8f + 18a \rightarrow 23f$	2-Methylphenyl	Anisole, 215 °C, MW, 3 h	38	66
8 g + 18 a ightarrow 23 g	4-Methylphenyl	Anisole, 215 °C, MW, 3 h	23	90
$8h + 18a \rightarrow 23h$	4-Fluorophenyl	Anisole, 215 °C, MW, 3 h	28	88
$\mathit{ent} extsf{-8h} + 18a ightarrow \mathit{ent} extsf{-23h}$	4-Fluorophenyl	Anisole, 215 °C, MW, 3 h	29	92
8i + 18a ightarrow 23i	3,5-Bis(trifluoromethyl)phenyl	Anisole, 215 °C, MW, 3 h	60	88
$8f + 18b \rightarrow 24f$	2-Methylphenyl	Anisole, 215 °C, MW, 3 h	9	92
$8h + 18b \rightarrow 24h$	4-Fluorophenyl	Anisole, 215 °C, MW, 3 h	4	86
$8i+18b\rightarrow 24i$	3,5-Bis(trifluoromethyl)phenyl	Anisole, 215 °C, MW, 3 h	17 ^f	86

^a Determined by ¹H NMR of the crude reaction mixture.

^b **19**:**20** = 64:36.

^c De of compound **20**.

^d **19**:**20** = 76:24.

^e De was determined by ¹H NMR of partially purified product (upon CC and MPLC).

^f Yield of the purified **24i** (100% de). According to ¹H NMR of the crude reaction mixture, the conversion was \sim 23%.

surprise, hydrogenation did not take place at the exocyclic C=C double bond (Scheme 2 and Table 1).

1,3-Dipolar cycloadditions of 2,4,6-trimethoxybenzonitrile oxide **18a** to the unsaturated nitriles **5** and **6** were carried

out. In contrast to the previously reported cycloadditions to α -cyanomethylidene substituted γ -lactams^{17–19} and γ -lactones,²⁰ 1,3-dipolar cycloaddition of nitrile oxide **18a** to the dipolarophile **5** gave a mixture of spiro compound **19** and the 1,2,4-oxadiazole **20** in a ratio of 64:36, respec-

Scheme 3. Reagents and conditions: (i) 2,4,6-trimethoxybenzonitrile oxide (18a) (1 equiv), toluene, reflux; (ii) chromatographic purification (CC and MPLC).

tively, and in a combined yield of 46%. When the reaction was carried out at 65 °C, the ratio of products changed in favour of the spiro compound 19 (19:20 = 76:24). Further chromatographic separation of this product mixture afforded the pure spiro product 19. Furthermore, reaction of 18a with the dipolarophile 6 furnished the 1,2,4-oxadiazole 21, exclusively. Formation of 1,2,4-oxadiazoles 20 and 21 might be attributed to steric factors, since the exocyclic C=C bond is sterically more hindered by the terpene residue than the C \equiv N bond (Scheme 3 and Table 2).

Finally, 1,3-dipolar cycloadditions of **18a** and 2,4,6-trimethylbenzonitrile oxide **18b** to α -alkylidene lactones **4b,c,h** and α -alkylidene ketones **8a,c–i** and *ent-***8h** were studied. Since the C=C double bonds of the dipolarophiles **4** and **8** are less activated for 1,3-dipolar cycloadditions to nitrile oxides, the reactions had to be performed at higher temperatures. Thus, within the lactone 4b,c.h series, reactions were carried out with 18a in refluxing decalin and furnished the expected spiro cycloadducts 22b,c,h in 8-49% yield. Compounds 22b and 22c were obtained in isomerically pure forms, while cycloadduct 22h was isolated in 76% de. Further chromatographic separation of 22/22'h afforded isomerically enriched major isomer 22h in 35% yield and 94% de and isomerically pure minor isomer 22'h in 1% yield. On the other hand, the above mentioned reaction conditions were not applicable for the cycloadditions of benzonitrile oxides 18a,b to α -alkylidene ketones 8a,c-i and ent-8h, due to low conversions and formation of various by-products. However, when cycloadditions were carried out in anisole under microwave irradiation at 215 °C, a series of cycloadducts 23a.c.e-i, ent-23h and

Scheme 4. Reagents and conditions: (i) decalin, reflux; (ii) anisole, 215 °C (MW irradiation, 300 W, 3–5 bar); (iii) chromatographic purification (CC and/ or MPLC).

24f,h,i was synthesised in 4-60% yields and in 66-100% de. An exception was (1R,3E,4S)-3-(cyclopentylmethylidene)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one **8d**, which did not react with nitrile oxide **18a** (Scheme 4 and Table 2).

Reductions and other transformations of camphor at the 3position often afford initial kinetically controlled *exo*-products, as a result of an attack of a reagent from the less hindered *endo*-face of the bicyclic system. Epimerisation of the *exo*-isomers, either in situ or as isolated products, can afford thermodynamically more stable *endo*-isomers, which are sterically less hindered.^{1,7,30–34} The literature data for the reductions of α -methylidene camphor derivatives into the corresponding methylene products usually report moderate *exo*-selectivity, ranging from 34% de to 100% de.^{1,33–36} Moderate *endo*-selectivity, which has been reported in the catalytic hydrogenation of 3-[(dimethylamino)methylidene]camphor **2**,^{7,30} can be explained by partial in situ base-promoted epimerisation of the less stable *exo*-epimer into the more stable *endo*-isomer.^{31–34} In our case, hydrogenations of the exocyclic C=C bond in compounds **3**, **4b** and **7** proceeded selectively from the sterically less hindered *endo*-face and led to the corresponding *exo*-products **13**–**15** as the major isomers. Similarly, 1,3-dipolar cycloadditions of benzonitrile oxides **18a** and **b** to the dipolarophiles **4b,c,h**, **5** and **8a,c,e**–**i** took place preferentially from the less hindered *endo*-face (Fig. 1).

High temperatures, employed in the above mentioned 1,3dipolar cycloadditions of nitrile oxides 18, could cause partial in situ E/Z-isomerisation of dipolarophiles 4 and 8. Consequently, minor isomers 19' and 22'-24' would not be formed by attack of nitrile oxide 18 from the more hindered *exo*-face of the (Z)-dipolarophiles 4 and 8 (cf. Fig. 1) but rather by attack from the less hindered *endo*-face of the (E)-dipolarophiles 4' and 8'. In order to clarify this issue, the dipolarophile 8f was heated in anisole at 215 °C under microwave irradiation for 3 h, followed by evaporation of the solvent. The ¹H NMR spectrum of the residue was identical to the spectrum of the starting compound 8f, thus

Figure 1. Stereoselectivity of additions to the exocyclic C=C double bond.

revealing that no E/Z-isomerisation took place. This experiment supported formation of two isomeric cycloadducts via facial differentiation and not via (otherwise possible) Z/E-isomerisation of the dipolarophile (Scheme 4, see also Fig. 1).

3. Structure determination

The structures of compounds 6, 7, 8a,c–i, 11, 13/13', 14/14', 15, 17/17', 19–21, 22b,c, 22/22'h, 23/23'a,c,e–i, 23c, *ent-23/*23'h and 24/24'f,h,i were determined by spectroscopic methods (IR, ¹H and ¹³C NMR, 2D NMR, NOESY spectroscopy, MS) and by elemental analyses for C, H and N. Compounds 6, 7, 8a,c–i, 11, 14, 15, 19, 21, 22a,b, 22'h, 23a,c,e,g–i, *ent-23h* and 24f,h,i were prepared in isomeri-

cally pure form. Compounds 13/13', 17/17', 22/22'h and 23/23'f were characterised as mixtures of the major isomers 13, 17, 22h and 23f and the minor isomers 8'a,c,d, 13', 17', 22'h and 23'f. The minor isomer 22'h was characterised by mp, ¹H NMR, EI-MS and HRMS, while the other minor isomers 13', 14', 17', 23'a,e-i and 24f,h,i were only characterised by ¹H NMR. Compound 20 could not be separated from a mixture of isomeric products 19 and 20 and was characterised by ¹H NMR and by elemental analysis as a mixture of isomeric compounds 19 and 20. Compounds *ent-2*, 8a,c-g, 11, 13, 15, 23a,c,e-i and *ent-2*h were not prepared in analytically pure form; their identities were confirmed by ¹³C NMR and EI–HRMS.

The configuration around the exocyclic C=C double bond in compounds 6, 8f,h,i and 21 was determined by NMR on

Figure 2. Structure determination by ¹H NMR, HMBC and NOESY spectroscopy.

Table 3. Selected ¹H NMR data for compounds 6-8, 13-15, 20 and 22-24

	Solvent		δ (ppm)			
			H–C(3')		H–C(4)
(1D 3E ACL)	somers 6 Q		-(/		- ()
(IK,5E,45)-I	cDC1		6 20			2.00
0	CDCl ₃		0.20			2.90
/ 8a	CDCl ₃		7.44 6.42			5.04 2.71
02 80	CDCl ₃		6.42			2.71
36 64	CDCl ₃		0.30 6 20			2.09
ou 9-	CDCl ₃		0.29			2.71
8e 8f	CDCl ₃		7.24			3.11 2.02
01 9 a	CDCl ₃		7.41			2.95
og	CDCl ₃		7.10			5.10 2.05
80 9:	CDCl ₃		7.19			3.05
01	CDCI ₃		1.24			5.00
(1R,3Z,4S)-1	Isomers 8'					
8'a	CDCl ₃		5.83			2.39
8′c	CDCl ₃		5.75			2.39
8′d	CDCl ₃		5.65			2.37
			δ (1	nm)	In	11 (Hz)
				o ()	<u>и</u> п-	-H (112)
			H-	U(4)	4–5	4–6
(1R,4R,5R)-	Isomers 13, 14					
13		CDCl ₃	2.4	9	0	0
14		CDCl ₃	2.2	7	0	0
(18150)	Somers 12/ 11	L/				
13 [/]	somers 13, 14	CDC1-	28	7	48	17
13		CDCl ₃	2.0	6	4.0	1.7
14		CDCI3	2.0	0	ч.5	1.0
			δ (1	opm)	Ju	н (Hz)
				2(a)	• H-	H (IIZ)
		~ ~	H	C(3)	3–4	3–5
(1R, 3R, 4R)-18	somer 15	CDCl ₃	2.2	1	0	0
					δ (ppn	1)
				-		
				H-C(4)	<u>ה</u>	H-C(5)
	(G) I 10	1/10/		H–C(4	<u>')</u>	H–C(5)
(1R,4R,4'S,5	S)-Isomer 19	and (1R,4	<i>R,4' R,5</i>	H-C(4)	') rs 22	H-C(5)
(1R,4R,4'S,5 19	S)-Isomer 19	and (1R,4 CD	<i>R,4' R,5</i> Cl ₃	H–C(4 5S)-isome 5.19	') rs 22	H–C(5)
(1R,4R,4'S,5 19 22b	S)-Isomer 19 a	and (1R,4) CD CD	<i>R,4' R,5</i> Cl ₃ Cl ₃	H–C(4 5.19 3.87 2.86	') rs 22	H-C(5) $\sim 2.8^{a}$ $\sim 2.5^{a}$
(1R,4R,4'S,5 19 22b 22c 22b	S)-Isomer 19 a	and (1R,4 CD) CD CD	R, 4'R, 5 Cl ₃ Cl ₃ Cl ₃ Cl ₃	H–C(4 5)-isome 5.19 3.87 3.86 5.20	') rs 22	H-C(5) $\sim 2.8^{a}$ $\sim 2.5^{a}$ $\sim 2.5^{a}$
(1R,4R,4'S,5 19 22b 22c 22h	S)-Isomer 19 a	and (1R,4) CD CD CD CD	$\overline{R,4'R,5}$ Cl_3 Cl_3 Cl_3 Cl_3 Cl_3 Cl_3 Cl_3 Cl_3 Cl_3	H-C(4 5.19 3.87 3.86 5.20 5.26	') rs 22	H-C(5) $\sim 2.8^{a}$ $\sim 2.5^{a}$ $\sim 2.2^{a}$ $\sim 2.2^{a}$
(1R,4R,4'S,5 19 22b 22c 22h (1R,4S,4'S,5S	S)-Isomer 19 a S)-Isomer 22'h	and (1R,4 CD CD CD CD CD CD	<i>R,4' R,5</i> Cl ₃ Cl ₃ Cl ₃ Cl ₃ Cl ₃ Cl ₃	H–C(4 5.19 3.87 3.86 5.20 5.36	') rs 22	H-C(5) $\sim 2.8^{a}$ $\sim 2.5^{a}$ $\sim 2.2^{a}$ $\sim 2.2^{a}$ 2.08
(1R,4R,4'S,5 19 22b 22c 22h (1R,4S,4'S,5S	S)-Isomer 19 a S)-Isomer 22'h	and (1R,4. CD CD CD CD CD CD	<i>R,4' R,5</i> Cl ₃ Cl ₃ Cl ₃ Cl ₃ Cl ₃ Cl ₃	H–C(4 5.19 3.87 3.86 5.20 5.36 H–C(4	') rs 22 ')	$\begin{array}{c} \text{H-C(5)} \\ \sim 2.8^{a} \\ \sim 2.5^{a} \\ \sim 2.5^{a} \\ \sim 2.2^{a} \\ 2.08 \\ \text{H-C(4)} \end{array}$
(1R,4R,4'S,5 19 22b 22c 22h (1R,4S,4'S,5S (1R 3R 4S 4'	S)-Isomer 19 a S)-Isomer 22'h R)-Isomers 23	and (1R,4. CD CD CD CD CD CD	<i>R,4' R,5</i> Cl ₃ Cl ₃ Cl ₃ Cl ₃ Cl ₃	H–C(4 5.)-isome 5.19 3.87 3.86 5.20 5.36 H–C(4	') rs 22	$\begin{array}{c} \text{H-C(5)} \\ \sim 2.8^{a} \\ \sim 2.5^{a} \\ \sim 2.2^{a} \\ 2.08 \\ \text{H-C(4)} \end{array}$
(1R,4R,4'S,5 19 22b 22c 22h (1R,4S,4'S,5S (1R,3R,4S,4' 23a	S)-Isomer 19 a S)-Isomer 22'h R)-Isomers 23	and (1R,4 CD CD CD CD CD	<i>R,4' R,5</i> Cl ₃ Cl ₃ Cl ₃ Cl ₃ Cl ₃ Cl ₃	H-C(4 5.19 3.87 3.86 5.20 5.36 H-C(4 3.57	') rs 22	H-C(5) $\sim 2.8^{a}$ $\sim 2.5^{a}$ $\sim 2.2^{a}$ 2.08 H-C(4) 2.39
(1R,4R,4'S,5 19 22b 22c 22h (1R,4S,4'S,5S (1R,3R,4S,4' 23a 23c	S)-Isomer 19 a S)-Isomer 22'h R)-Isomers 23	and (1R,4 CD CD CD CD CD	<i>R,4' R,5</i> Cl ₃ Cl ₃ Cl ₃ Cl ₃ Cl ₃ Cl ₃ Cl ₃	H-C(4 5S)-isome 5.19 3.87 3.86 5.20 5.36 H-C(4 3.57 3.60	') rs 22 ')	H-C(5) $\sim 2.8^{a}$ $\sim 2.5^{a}$ $\sim 2.2^{a}$ 2.08 H-C(4) 2.39 2.43
(1R,4R,4'S,5 19 22b 22c 22h (1R,4S,4'S,5S (1R,3R,4S,4' 23a 23c 23e	S)-Isomer 19 a S)-Isomer 22'h R)-Isomers 23	and (1R,4 CD CD CD CD CD CD CD	<i>R,4' R,5</i> Cl ₃ Cl ₃ Cl ₃ Cl ₃ Cl ₃ Cl ₃ Cl ₃ Cl ₃ Cl ₃	H-C(4 5.19 3.87 3.86 5.20 5.36 H-C(4 3.57 3.60 4.80	') rs 22 ')	$\begin{array}{c} H-C(5) \\ \sim 2.8^{a} \\ \sim 2.5^{a} \\ \sim 2.2^{a} \\ 2.08 \\ H-C(4) \\ \end{array}$
(1R,4R,4'S,5 19 22b 22c 22h (1R,4S,4'S,5S (1R,3R,4S,4' 23a 23c 23e 23f	S)-Isomer 19 a S)-Isomer 22'h R)-Isomers 23	and (1R,4 CD CD CD CD CD CD CD CD CD CD	R,4' R,5 Cl ₃ Cl ₃ Cl ₃ Cl ₃ Cl ₃ Cl ₃ Cl ₃ Cl ₃ Cl ₃ Cl ₃	H-C(4 5.19 3.87 3.86 5.20 5.36 H-C(4 3.57 3.60 4.80 5.14	') rs 22 ')	$\begin{array}{c} H-C(5) \\ \sim 2.8^{a} \\ \sim 2.5^{a} \\ \sim 2.5^{a} \\ \sim 2.2^{a} \\ 2.08 \\ H-C(4) \\ \hline \\ 2.39 \\ 2.43 \\ 2.02 \\ \sim 2.36^{a} \end{array}$
(1R,4R,4'S,5 19 22b 22c 22h (1R,4S,4'S,5S (1R,3R,4S,4' 23a 23c 23e 23f 23g	S)-Isomer 19 a S)-Isomer 22'h R)-Isomers 23	and (1R,4 CD CD CD CD CD CD CD CD CD CD CD	R,4' R,5 Cl ₃ Cl ₃	H-C(4 5.19 3.87 3.86 5.20 5.36 H-C(4 3.57 3.60 4.80 5.14 4.78	') rs 22	$\begin{array}{c} H-C(5) \\ \sim 2.8^{a} \\ \sim 2.5^{a} \\ \sim 2.2^{a} \\ 2.08 \\ H-C(4) \\ \hline \\ 2.39 \\ 2.43 \\ 2.02 \\ \sim 2.36^{a} \\ 2.01 \\ \end{array}$
(1R,4R,4'S,5 19 22b 22c 22h (1R,4S,4'S,5S (1R,3R,4S,4' 23a 23c 23e 23f 23g 23h and ent-2	S)-Isomer 19 o S)-Isomer 22'h R)-Isomers 23 23h	and (1R,4 CD CD CD CD CD CD CD CD CD CD CD	R,4' R,5 Cl ₃ Cl ₃	H-C(4 5.19 3.87 3.86 5.20 5.36 H-C(4 3.57 3.60 4.80 5.14 4.78 4.79	') rs 22	$\begin{array}{c} H-C(5) \\ \sim 2.8^{a} \\ \sim 2.5^{a} \\ \sim 2.2^{a} \\ 2.08 \\ H-C(4) \\ \hline \\ 2.39 \\ 2.43 \\ 2.02 \\ \sim 2.36^{a} \\ 2.01 \\ 1.99 \\ \end{array}$
(1R,4R,4'S,5 19 22b 22c 22h (1R,4S,4'S,5S (1R,3R,4S,4' 23a 23c 23e 23f 23g 23h and ent-2 23i	S)-Isomer 19 o S)-Isomer 22'h R)-Isomers 23 23h	and (1R,4 CD CD CD CD CD CD CD CD CD CD CD CD CD	R,4' R,5 Cl ₃ Cl ₃	H-C(4 5.19 3.87 3.86 5.20 5.36 H-C(4 3.57 3.60 4.80 5.14 4.78 4.79 4.94	') rs 22	$\begin{array}{c} H-C(5) \\ \sim 2.8^{a} \\ \sim 2.5^{a} \\ \sim 2.2^{a} \\ 2.08 \\ H-C(4) \\ \hline \\ 2.39 \\ 2.43 \\ 2.02 \\ \sim 2.36^{a} \\ 2.01 \\ 1.99 \\ \sim 1.78^{a} \\ \end{array}$
(1R,4R,4'S,5 19 22b 22c 22h (1R,4S,4'S,5S (1R,3R,4S,4' 23a 23c 23c 23f 23g 23h and ent-2 23i 24f	S)-Isomer 19 o S)-Isomer 22'h R)-Isomers 23 23h	and (1R,4 CD CD CD CD CD CD CD CD CD CD CD CD CD	R,4' R,5 Cl ₃ Cl ₃	H-C(4 5)-isome 5.19 3.87 3.86 5.20 5.36 H-C(4 3.57 3.60 4.80 5.14 4.78 4.79 4.94 4.79	') rs 22	$\begin{array}{c} H-C(5) \\ \sim 2.8^{a} \\ \sim 2.5^{a} \\ \sim 2.2^{a} \\ 2.08 \\ H-C(4) \\ \hline \\ 2.39 \\ 2.43 \\ 2.02 \\ \sim 2.36^{a} \\ 2.01 \\ 1.99 \\ \sim 1.78^{a} \\ 2.49 \\ \end{array}$
(1R,4R,4'S,5 19 22b 22c 22h (1R,4S,4'S,5S (1R,3R,4S,4' 23a 23c 23c 23f 23g 23h and ent-2 23i 24f 24h	S)-Isomer 19 o S)-Isomer 22'h R)-Isomers 23 23h	and (1R,4 CD CD CD CD CD CD CD CD CD CD CD CD CD	R,4' R,5 Cl ₃ Cl ₃	H-C(4 5)-isome 5.19 3.87 3.86 5.20 5.36 H-C(4 3.57 3.60 4.80 5.14 4.78 4.79 4.94 4.79 4.47	') rs 22	$\begin{array}{c} H-C(5) \\ \sim 2.8^{a} \\ \sim 2.5^{a} \\ \sim 2.2^{a} \\ 2.08 \\ H-C(4) \\ \hline \\ 2.39 \\ 2.43 \\ 2.02 \\ \sim 2.36^{a} \\ 2.01 \\ 1.99 \\ \sim 1.78^{a} \\ 2.49 \\ 2.20 \\ \end{array}$
(1R,4R,4'S,5 19 22b 22c 22h (1R,4S,4'S,5S (1R,3R,4S,4' 23a 23c 23c 23f 23g 23h and ent-2 23i 24f 24h 24i	S)-Isomer 19 o S)-Isomer 22'h R)-Isomers 23 23h	, 24 CD CD CD CD CD CD CD CD CD CD CD CD CD	R,4' R,5 Cl ₃ Cl ₃	H-C(4 <i>S</i>)-isome 5.19 3.87 3.86 5.20 5.36 H-C(4 3.57 3.60 4.80 5.14 4.78 4.79 4.94 4.79 4.47 4.63	') rs 22	$\begin{array}{c} \text{H-C(5)} \\ \sim 2.8^{a} \\ \sim 2.5^{a} \\ \sim 2.2^{a} \\ 2.08 \\ \text{H-C(4)} \\ \hline \\ 2.39 \\ 2.43 \\ 2.02 \\ \sim 2.36^{a} \\ 2.01 \\ 1.99 \\ \sim 1.78^{a} \\ 2.49 \\ 2.20 \\ \sim 1.82^{a} \\ \end{array}$
(1R,4R,4'S,5 19 22b 22c 22h (1R,4S,4'S,5S (1R,3R,4S,4' 23a 23c 23c 23f 23g 23h and ent-2 23i 24f 24h 24i	S)-Isomer 19 o S)-Isomer 22'h R)-Isomers 23 23h	, 24 CD CD CD CD CD CD CD CD CD CD CD CD CD	R,4' R,5 Cl ₃ Cl ₃	H-C(4 <i>S</i>)-isome 5.19 3.87 3.86 5.20 5.36 H-C(4 3.57 3.60 4.80 5.14 4.78 4.79 4.94 4.79 4.47 4.63 H.C(4)	() () ()	H-C(5) $\sim 2.8^{a}$ $\sim 2.5^{a}$ $\sim 2.2^{a}$ 2.08 H-C(4) 2.39 2.43 2.02 $\sim 2.36^{a}$ 2.01 1.99 $\sim 1.78^{a}$ 2.49 2.20 $\sim 1.82^{a}$
(1R,4R,4'S,5 19 22b 22c 22h (1R,4S,4'S,5S (1R,3R,4S,4' 23a 23c 23f 23g 23h and ent-2 23i 24f 24h 24i	S)-Isomer 19 o S)-Isomer 22'h R)-Isomers 23 23h	, 24 CD CD CD CD CD CD CD CD CD CD CD CD CD	R,4' R,5 Cl ₃ Cl ₃	H-C(4 <i>S</i>)-isome 5.19 3.87 3.86 5.20 5.36 H-C(4 3.57 3.60 4.80 5.14 4.78 4.79 4.94 4.79 4.47 4.63 H-C(4	') <i>rs</i> 22 ')	$\begin{array}{c} \text{H-C(5)} \\ \sim 2.8^{a} \\ \sim 2.5^{a} \\ \sim 2.5^{a} \\ \sim 2.2^{a} \\ 2.08 \\ \text{H-C(4)} \\ \hline \\ 2.39 \\ 2.43 \\ 2.02 \\ \sim 2.36^{a} \\ 2.01 \\ 1.99 \\ \sim 1.78^{a} \\ 2.49 \\ 2.20 \\ \sim 1.82^{a} \\ \text{H-C(4)} \\ \end{array}$
(1R,4R,4'S,5 19 22b 22c 22h (1R,4S,4'S,5S (1R,3R,4S,4' 23a 23c 23f 23g 23h and ent-2 23i 24f 24h 24i (1R,3S,4S,4'A	S)-Isomer 19 o S)-Isomer 22'h R)-Isomers 23 23h S)-Isomers 23 '	and (1R,4 CD CD CD CD CD CD CD CD CD CD CD CD CD	R,4' R,5 Cl ₃ Cl ₃	H-C(4 5.19 3.87 3.86 5.20 5.36 H-C(4 3.57 3.60 4.80 5.14 4.79 4.94 4.79 4.47 4.63 H-C(4	') rs 22 ')	$\begin{array}{c} H-C(5) \\ \sim 2.8^{a} \\ \sim 2.5^{a} \\ \sim 2.5^{a} \\ \sim 2.2^{a} \\ 2.08 \\ H-C(4) \\ \hline \\ 2.39 \\ 2.43 \\ 2.02 \\ \sim 2.36^{a} \\ 2.01 \\ 1.99 \\ \sim 1.78^{a} \\ 2.49 \\ 2.20 \\ \sim 1.82^{a} \\ H-C(4) \\ \end{array}$
(1R,4R,4'S,5 19 22b 22c 22h (1R,4S,4'S,5S (1R,3R,4S,4' 23a 23c 23f 23g 23h and ent-2 23i 24f 24h 24i (1R,3S,4S,4'A	S)-Isomer 19 o S)-Isomer 22'h R)-Isomers 23 23h S)-Isomers 23 '	and (1R,4 CD CD CD CD CD CD CD CD CD CD CD CD CD	R,4' R,5 Cl ₃ Cl ₃	H-C(4 <i>is</i>)- <i>isome</i> <i>5</i> .19 <i>3</i> .87 <i>3</i> .86 <i>5</i> .20 <i>5</i> .36 H-C(4 <i>3</i> .57 <i>3</i> .60 <i>4</i> .80 <i>5</i> .14 <i>4</i> .79 <i>4</i> .94 <i>4</i> .79 <i>4</i> .47 <i>4</i> .63 H-C(4 <i>3</i> .43	') rs 22 ')	$\begin{array}{c} H-C(5) \\ \sim 2.8^{a} \\ \sim 2.5^{a} \\ \sim 2.5^{a} \\ \sim 2.2^{a} \\ 2.08 \\ H-C(4) \\ \hline \\ 2.39 \\ 2.43 \\ 2.02 \\ \sim 2.36^{a} \\ 2.01 \\ 1.99 \\ \sim 1.78^{a} \\ 2.49 \\ 2.20 \\ \sim 1.82^{a} \\ H-C(4) \\ \hline \\ \end{array}$
(1R,4R,4'S,5 19 22b 22c 22h (1R,4S,4'S,5S (1R,3R,4S,4' 23a 23c 23f 23g 23h and ent-2 23i 24f 24h 24i (1R,3S,4S,4'A) 23a 23a 23e	S)-Isomer 19 o S)-Isomer 22'h R)-Isomers 23 23h S)-Isomers 23 '	and (1R,4 CD CD CD CD CD CD CD CD CD CD CD CD CD	R,4' R,5 Cl ₃ Cl ₃	H-C(4 <i>is</i>)- <i>isome</i> <i>5</i> .19 <i>3</i> .87 <i>3</i> .86 <i>5</i> .20 <i>5</i> .36 H-C(4 <i>3</i> .57 <i>3</i> .60 <i>4</i> .80 <i>5</i> .14 <i>4</i> .79 <i>4</i> .94 <i>4</i> .79 <i>4</i> .47 <i>4</i> .63 H-C(4 <i>3</i> .43 <i>4</i> .61	') rs 22 ')	$\begin{array}{c} H-C(5) \\ \sim 2.8^{a} \\ \sim 2.5^{a} \\ \sim 2.5^{a} \\ \sim 2.2^{a} \\ 2.08 \\ H-C(4) \\ \hline \\ 2.39 \\ 2.43 \\ 2.02 \\ \sim 2.36^{a} \\ 2.01 \\ 1.99 \\ \sim 1.78^{a} \\ 2.49 \\ 2.20 \\ \sim 1.82^{a} \\ H-C(4) \\ \hline \\ a \end{array}$
(1R,4R,4'S,5 19 22b 22c 22h (1R,4S,4'S,5S (1R,3R,4S,4' 23a 23c 23f 23g 23h and ent-2 23i 24f 24h 24i (1R,3S,4S,4',4' 23a 23a 23e 23f	S)-Isomer 19 o S)-Isomer 22'h R)-Isomers 23 23h S)-Isomers 23 '	and (1R,4 CD CD CD CD CD CD CD CD CD CD CD CD CD	R,4' R,5 Cl ₃ Cl ₃	H-C(4 <i>is</i>)- <i>isome</i> <i>5</i> .19 <i>3</i> .87 <i>3</i> .86 <i>5</i> .20 <i>5</i> .36 H-C(4 <i>3</i> .57 <i>3</i> .60 <i>4</i> .80 <i>5</i> .14 <i>4</i> .79 <i>4</i> .94 <i>4</i> .79 <i>4</i> .47 <i>4</i> .63 H-C(4 <i>3</i> .43 <i>4</i> .61 <i>5</i> .03	') rs 22 ')	$\begin{array}{c} H-C(5) \\ \sim 2.8^{a} \\ \sim 2.5^{a} \\ \sim 2.5^{a} \\ \sim 2.5^{a} \\ \sim 2.2^{a} \\ 2.08 \\ H-C(4) \\ \hline \\ 2.39 \\ 2.43 \\ 2.02 \\ \sim 2.36^{a} \\ 2.01 \\ 1.99 \\ \sim 1.78^{a} \\ 2.49 \\ 2.20 \\ \sim 1.82^{a} \\ H-C(4) \\ \hline \\ a \\ a \\ \end{array}$
(1R,4R,4'S,5 19 22b 22c 22h (1R,4S,4'S,5S (1R,3R,4S,4' 23a 23c 23f 23g 23h and ent-2 23i 24f 24h 24i (1R,3S,4S,4',4' 23a 23e 23f 23g 23h 23g	S)-Isomer 19 o S)-Isomer 22'h R)-Isomers 23 23h S)-Isomers 23 '	and (1R,4 CD CD CD CD CD CD CD CD CD CD CD CD CD	R,4' R,5 Cl ₃ Cl ₃	$\begin{array}{r} \text{H-C(4}\\ \text{is})\text{-isome}\\ 5.19\\ 3.87\\ 3.86\\ 5.20\\ 5.36\\ \text{H-C(4}\\ \hline \\ 3.57\\ 3.60\\ 4.80\\ 5.14\\ 4.79\\ 4.94\\ 4.79\\ 4.94\\ 4.79\\ 4.47\\ 4.63\\ \text{H-C(4}\\ \hline \\ 3.43\\ 4.61\\ 5.03\\ 4.59\\ \hline \end{array}$	') rs 22 ')	$\begin{array}{c} H-C(5) \\ \sim 2.8^{a} \\ \sim 2.5^{a} \\ \sim 2.5^{a} \\ \sim 2.5^{a} \\ \sim 2.2^{a} \\ 2.08 \\ H-C(4) \\ \hline \\ 2.39 \\ 2.43 \\ 2.02 \\ \sim 2.36^{a} \\ 2.01 \\ 1.99 \\ \sim 1.78^{a} \\ 2.49 \\ 2.20 \\ \sim 1.82^{a} \\ H-C(4) \\ \hline \\ a \\ a \\ a \\ a \\ \end{array}$
(1R,4R,4'S,5 19 22b 22c 22h (1R,4S,4'S,5S (1R,3R,4S,4' 23a 23c 23f 23g 23h and ent-2 23i 24f 24h 24i (1R,3S,4S,4',4' 23a 23c 23f 23g 23h and ent-2 23i 24f 24h 24i	S)-Isomer 19 o S)-Isomer 22'h R)-Isomers 23 23h S)-Isomers 23 '	and (1R,4, CD) CD) CD) CD) CD) CD) CD) CD) CD) CD)	R,4' R,5 Cl ₃ Cl ₃	$\begin{array}{r} \text{H-C(4}\\ \text{is})\text{-isome}\\ 5.19\\ 3.87\\ 3.86\\ 5.20\\ 5.36\\ \text{H-C(4}\\ \hline \\ 3.57\\ 3.60\\ 4.80\\ 5.14\\ 4.78\\ 4.79\\ 4.94\\ 4.79\\ 4.47\\ 4.63\\ \text{H-C(4}\\ \hline \\ 3.43\\ 4.61\\ 5.03\\ 4.59\\ 4.59\\ \hline \end{array}$	') rs 22 ')	$\begin{array}{c} H-C(5) \\ \sim 2.8^{a} \\ \sim 2.5^{a} \\ \sim 2.5^{a} \\ \sim 2.5^{a} \\ \sim 2.2^{a} \\ 2.08 \\ H-C(4) \\ \hline \\ 2.39 \\ 2.43 \\ 2.02 \\ \sim 2.36^{a} \\ 2.01 \\ 1.99 \\ \sim 1.78^{a} \\ 2.49 \\ 2.20 \\ \sim 1.82^{a} \\ H-C(4) \\ \hline \\ a \\ a \\ a \\ a \\ a \\ a \\ \end{array}$
(1R,4R,4'S,5 19 22b 22c 22h (1R,4S,4'S,5S (1R,3R,4S,4' 23a 23c 23f 23g 23h and <i>ent-2</i> 23i 24f 24h 24i (1R,3S,4S,4',4' 23a 23c 23f 23g 23h and <i>ent-2</i> 23i 24f 24h 24i	S)-Isomer 19 o S)-Isomer 22'h R)-Isomers 23 23h S)-Isomers 23 '	and (1R,4, CD) CD) CD) CD) CD) CD) CD) CD) CD) CD)	R,4' R,5 Cl ₃ Cl ₃	$\begin{array}{r} \text{H-C(4}\\ \text{is})\text{-isome}\\ 5.19\\ 3.87\\ 3.86\\ 5.20\\ 5.36\\ \text{H-C(4}\\ \hline \\ 3.57\\ 3.60\\ 4.80\\ 5.14\\ 4.79\\ 4.94\\ 4.79\\ 4.94\\ 4.79\\ 4.47\\ 4.63\\ \text{H-C(4}\\ \hline \\ 3.43\\ 4.61\\ 5.03\\ 4.59\\ 4.59\\ 4.72\\ \hline \end{array}$	') rs 22 ')	$\begin{array}{c} H-C(5) \\ \sim 2.8^{a} \\ \sim 2.5^{a} \\ \sim 2.5^{a} \\ \sim 2.5^{a} \\ \sim 2.2^{a} \\ 2.08 \\ H-C(4) \\ \hline \\ 2.39 \\ 2.43 \\ 2.02 \\ \sim 2.36^{a} \\ 2.01 \\ 1.99 \\ \sim 1.78^{a} \\ 2.49 \\ 2.20 \\ \sim 1.82^{a} \\ H-C(4) \\ \hline \\ a \\ a$
(1R,4R,4'S,5 19 22b 22c 22h (1R,4S,4'S,5S (1R,3R,4S,4' 23a 23c 23f 23g 23h and <i>ent-2</i> 23i 24f 24h 24i (1R,3S,4S,4', 23a 23c 23f 23g 23h and <i>ent-2</i> 23i 24f 23g 23h and <i>ent-2</i> 23i 24f	S)-Isomer 19 o S)-Isomer 22'h R)-Isomers 23 23h S)-Isomers 23 ⁷ 23h	and (1R,4, CD) CD) CD) CD) CD) CD) CD) CD) CD) CD)	R,4' R,5 Cl ₃ Cl ₃	$\begin{array}{r} \text{H-C(4}\\ \text{is})\text{-isome}\\ 5.19\\ 3.87\\ 3.86\\ 5.20\\ 5.36\\ \text{H-C(4}\\ \hline \\ 3.57\\ 3.60\\ 4.80\\ 5.14\\ 4.79\\ 4.80\\ 5.14\\ 4.79\\ 4.94\\ 4.79\\ 4.47\\ 4.63\\ \text{H-C(4}\\ \hline \\ 3.43\\ 4.61\\ 5.03\\ 4.59\\ 4.59\\ 4.59\\ 4.72\\ 4.66\\ \hline \end{array}$	') rs 22 ')	$\begin{array}{c} H-C(5) \\ \sim 2.8^{a} \\ \sim 2.5^{a} \\ \sim 2.5^{a} \\ \sim 2.5^{a} \\ \sim 2.2^{a} \\ 2.08 \\ H-C(4) \\ \hline \\ 2.39 \\ 2.43 \\ 2.02 \\ \sim 2.36^{a} \\ 2.01 \\ 1.99 \\ \sim 1.78^{a} \\ 2.49 \\ 2.20 \\ \sim 1.82^{a} \\ H-C(4) \\ \hline \\ a \\ a$
(1R,4R,4'S,5 19 22b 22c 22h (1R,4S,4'S,5S (1R,3R,4S,4' 23a 23c 23f 23g 23h and ent-2 23i 24f 24h 24i (1R,3S,4S,4', 23a 23c 23f 23g 23h and ent-2 23i 24f 23g 23h and ent-2 23i 24f 24h	S)-Isomer 19 o S)-Isomer 22'h R)-Isomers 23 23h S)-Isomers 23 ⁷ 23h	and (1R,4 CD CD CD CD CD CD CD CD CD CD CD CD CD	R,4' R,5 Cl ₃ Cl ₃	$\begin{array}{r} \text{H-C(4}\\ \text{is})\text{-isome}\\ 5.19\\ 3.87\\ 3.86\\ 5.20\\ 5.36\\ \text{H-C(4}\\ \hline \\ 3.57\\ 3.60\\ 4.80\\ 5.14\\ 4.78\\ 4.79\\ 4.94\\ 4.79\\ 4.94\\ 4.79\\ 4.47\\ 4.63\\ \text{H-C(4}\\ \hline \\ 3.43\\ 4.61\\ 5.03\\ 4.59\\ 4.59\\ 4.59\\ 4.59\\ 4.59\\ 4.34\\ \hline \end{array}$	') rs 22 ')	$\begin{array}{c} H-C(5) \\ \sim 2.8^{a} \\ \sim 2.5^{a} \\ \sim 2.5^{a} \\ \sim 2.5^{a} \\ \sim 2.2^{a} \\ 2.08 \\ H-C(4) \\ \hline \\ 2.39 \\ 2.43 \\ 2.02 \\ \sim 2.36^{a} \\ 2.01 \\ 1.99 \\ \sim 1.78^{a} \\ 2.49 \\ 2.20 \\ \sim 1.82^{a} \\ H-C(4) \\ \hline \\ a \\ a$

^a Overlapped by other signals.

the basis of long-range coupling constants, ${}^{3}J_{C(2)-H(3')}$, between the methylidene proton (H-C(3')) and the carbonyl carbon atom (O=C(2)), measured from the antiphase splitting of cross peaks in the HMBC spectrum. Generally, the magnitude of coupling constants, ${}^{3}J_{C-H}$, for nuclei with *cis*configuration around the C=C double bond are smaller (2– 6 Hz) than that for *trans*-oriented nuclei (8–12 Hz).^{13,37–47} The magnitude of the coupling constant in compounds **6**, **8f,h,i** and **21** (${}^{3}J_{C-H} = 5.3-6.3$ Hz) was in agreement with the (*E*)-configuration. In the same manner, the (*E*)-configuration of compound **11** was established on the basis of the magnitude of coupling constant, ${}^{3}J_{C(3)-H(4')} = 5.7$ Hz, between the carbonyl carbon atom (O=C(3)) and the methylidene proton (*H*-C(4')) (Fig. 2).

Additionally, the configuration around the exocyclic C=Cdouble bond in isomeric compounds 8c,d and 8'c,d was established by NOESY spectroscopy. The NOE between the allylic proton(s) and H-C(4) indicated the (E)-configuration of 8c,d, while the NOE between H-(3') and H-C(4) in the minor isomers **8**'c,d was in agreement with the (Z)-configuration. Similarly, the NOE between N-Hand H-C(5) suggested the (E)-configuration of compound 17. The E/Z-configuration of compounds 17 and 17' was also established by correlation of chemical shifts δ for H-C(4') and NH with typical values, reported previously for a series of closely related (1R,5S)-4-alkylaminomethylidene-1,8,8-trimethyl-2-oxabicyclo[3.2.1]octan-3-ones.²² In the spiro cycloadduct series, the NOE between H-C(4')and the bridge methyl group in compounds 22b,h, 23a,c,e-i, ent-23h and 24f,h,i supported the proposed configuration at the newly formed stereogenic centres (Fig. 2).

The configuration at the 4-position in compounds 13, 13', 14 and 14', as well as at the 3-position in compound 15, was determined by NMR on the basis of vicinal coupling constants, ${}^{3}J_{\mathrm{H}(3)-\mathrm{H}(4)}$ and ${}^{3}J_{\mathrm{H}(4)-\mathrm{H}(5)}$. The dihedral angles between $H-\mathrm{C}(4)$ and $H-\mathrm{C}(5)$ in the major *exo*-isomers 13 and 14 and between H-C(3) and H-C(4) in the exo-isomer 15 are close to 90° and, following the Karplus equation,⁴⁸ no appreciable coupling between these protons would be expected. Accordingly, negligible coupling constants, ${}^{3}J_{\text{H3}-\text{H4}} \sim 0$ Hz and ${}^{3}J_{\text{H4}-\text{H5}} \sim 0$ Hz, were observed in the ${}^{1}\text{H}$ NMR spectra of the *exo*-isomers **13–15**. On the other hand, a coupling constant, ${}^{3}J_{\text{H4}-\text{H5}} = 4.5 - 4.8$ Hz was characteristic for the minor *endo*-isomers 13' and 14', due to a smaller dihedral angle ($\sim 30^\circ$) between *H*–C(4) and *H*–C(5). Furthermore, a long-range coupling, $J_{H4-H6a} = 1.6-1.7$ Hz, between H-C(4) and H_a -C(6), by the virtue of the 'W' configuration,49 was observed in minor endo-isomers 13' and 14'. Similar patterns of multiplicities for H-C(4) and magnitudes of coupling constants, J_{H4-H5} and J_{H4-H6a} , were also reported in the literature for analogous compounds (Fig. 2 and Table 3).^{21,23,24,27,50,51}

The structures of compounds 8h, 19, 22b, 23a, 23f, 23g, *ent*-23h and 24h were determined by X-ray diffraction (Figs. 3–10).

Data for the known compounds 6^{28} 8a, 54 8c, 55 8e, 54,56 8g³¹ and 8h⁵⁷ were consistent with the literature data.

Figure 3. The asymmetric unit of compound 8h. Ellipsoids are plotted at 50% probability level. H atoms are drawn as circles of arbitrary radii.

4. Conclusion

Catalytic hydrogenation of α -alkylidene compounds **3**, **4b** and **7** proceeded stereoselectively from the sterically less hindered *endo*-face to afford the major *exo*-isomers of hydrogenation products **13–15** in 28–100% de. On the other hand, catalytic hydrogenation of compound **11** took place only at the nitroso group to furnish a mixture of isomers **17** and **17**'. **1**,3-Dipolar cycloadditions of stable benzonitrile oxides **18a,b** to the dipolarophiles **4b,c,h**, **5**, **6** and **8a,c,e–i** led to two types of products. In the case of the unsaturated nitrile **6**, 1,2,4-oxadiazole **21** was the only product, while in the case of the lactone analogue **5**, cycloaddition took place at the exocyclic C=C bond, as well as at the cyano group to give a mixture of spiro compound 19 and 1,2,4-oxadiazole 20. The ratio between products 19 and 20 was temperature dependent. On the other hand, 1,3-dipolar cycloadditions of 18a,b to α -alkylidene lactones 4b,c,h and α -alkylidene camphors 8a,c,e-i were diastereoselective and afforded the corresponding spirolactones 22b,c,h and spirocamphors 23a,c,e-i and 24f,h,i in low to moderate yields and in 66–100% de. The *exo*-selectivity of the additions to the exocyclic C=C bond is in agreement with the literature data and seems to be dependent on the substituent attached to the methylidene carbon atom, as well as on the type of the terpene residue. Spiro compounds

Figure 4. The asymmetric unit of compound 19. Ellipsoids are plotted at 50% probability level. H atoms are drawn as circles of arbitrary radii.

Figure 5. The asymmetric unit of compound 22b. Ellipsoids are plotted at 50% probability level. H atoms are drawn as circles of arbitrary radii.

Figure 6. The asymmetric unit of compound 23a. Ellipsoids are plotted at 50% probability level. H atoms are drawn as circles of arbitrary radii.

19 and 22–24 might be useful intermediates for further reductive transformations into novel nonracemic camphor derived γ -amino alcohols.

5. Experimental

5.1. General methods

Melting points were determined on a Kofler microhot stage. The ¹H NMR spectra were obtained on a Bruker Avance DPX 300 at 300 MHz for ¹H and 75.5 MHz for ¹³C nucleus, using DMSO- d_6 and CDCl₃ with TMS as the internal standard, as solvents. Mass spectra were

recorded on an AutoSpecQ spectrometer, IR spectra on a Perkin–Elmer Spectrum BX FTIR spectrophotometer. Microanalyses were performed on a Perkin–Elmer CHN Analyser 2400. Microwave irradiations were performed on a CEM Discover laboratory microwave oven.

Column chromatography (CC) was performed on silica gel (Fluka, silica gel 60, 0.04–0.06 mm). Medium pressure liquid chromatography (MPLC) was performed with a Büchi isocratic system with detection[†] on silica gel; detection: UV 254 nm; sample amount: 100-150 mg of iso-

[†]Donation of Alexander von Humboldt Foundation.

Figure 7. The asymmetric unit of compound 23f. Ellipsoids are plotted at 50% probability level. H atoms are drawn as circles of arbitrary radii.

Figure 8. The asymmetric unit of compound 23g. Ellipsoids are plotted at 50% probability level. H atoms are drawn as circles of arbitrary radii.

meric mixture per each run. MPLC column characteristics: (a) dry filled column: 15×460 mm, Merck, silica gel 60, $15-035 \mu m$, backpressure ~12 bar; (b) wet filled column: 15×460 mm, Merck, LiChrospher[®], 12 μm , backpressure ~26 bar. Ratio of isomers and de were determined by ¹H NMR.

PhMgBr (1 M in THF), 4-Me–C₆H₄MgBr (1 M in Et_2O), 2-Me–C₆H₄MgCl (1 M in THF), 4-F–C₆H₄MgBr (2 M in

Et₂O), [3,5-bis(trifluoromethyl)phenyl]magnesium bromide (0.5 M in THF), MeMgCl (3 M in THF), *n*-BuMgCl (2 M in THF), cyclopentylmagnesium chloride (2 M in Et₂O), potassium cyanide, 2-methyl-1*H*-indole and *tert*-butyl nitrite are commercially available (Fluka AG). (1*R*,3*E*,4*S*)-3-[(Dimethylamino)methylidene]-1,7,7-trimethylbicyclo-[2.2.1]heptan-2-one **2**,²¹ (1*R*,4*E*,5*S*)-4-[(dimethylamino) methylidene]-1,8,8-trimethyl-2-oxabicyclo[3.2.1]octan-3one **3**,²² (1*R*,4*E*,5*S*)-1,8,8-trimethyl-4-propylidene-2-oxabi-

Figure 9. The asymmetric unit of compound ent-23h. Ellipsoids are plotted at 50% probability level. H atoms are drawn as circles of arbitrary radii.

Figure 10. The asymmetric unit of compound 24h. Ellipsoids are plotted at 50% probability level. H atoms are drawn as circles of arbitrary radii.

cyclo[3.2.1]octan-3-one **4b**, (1R,4E,5S)-1,8,8-trimethyl-4pentylidene-2-oxabicyclo[3.2.1]octan-3-one **4c**, (1R,4E, 5S)-4-(4-fluorobenzylidene)-1,8,8-trimethyl-2-oxabicyclo-[3.2.1]octan-3-one **4h** and (1R,4E,5S)-4-(cyanomethylidene)-1,8,8-trimethyl-2-oxabicyclo[3.2.1]octan-3-one **5**,²⁶ 2,4,6-trimethoxybenzonitrile oxide **18a** and 2,4,6-trimethylbenzonitrile oxide **18b**^{52,53} were prepared according to the literature procedures. Sources of chirality: (a) (+)-camphor (1) (Fluka AG), product number 21,300, purum, natural, $\ge 97.0\%$ (GC, sum of enantiomers), $[\alpha]_{546}^{20} = +54.5 \pm 2.5$ (*c* 10, EtOH), $[\alpha]_D^{20} = +42.5 \pm 2.5$ (*c* 10, EtOH), mp 176–180 °C, ee not specified; (b) (–)-camphor (*ent*-1) (Fluka AG), product number 21,295, purum, natural, $\ge 95.0\%$ (GC, sum of enantiomers), $[\alpha]_D^{20} = -43 \pm 2$ (*c* 10, EtOH), mp and ee not specified.

5.2. (1*S*,3*E*,4*R*)-3-[(Dimethylamino)methylidene]-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one *ent*-2

This compound was prepared from (1*S*)-(–)-camphor *ent*-1 (5 g, 33 mmol) and *Bredereck's* reagent (8.9 ml, 43 mmol) in refluxing DMF (40 ml) according to the literature procedure for the preparation of its (1*R*,2*E*,4*S*)-enantiomer 2.²¹ Yield: 2.183 g (32%) of a dirty white solid; mp 60–63 °C, lit.²¹ mp 59–62 °C; $[\alpha]_D^{21} = -455.7$ (*c* 0.19, CH₂Cl₂). *m/z* (EI) = 207 (M⁺); *m/z* (HRMS) found: 207.162650 (M⁺); C₁₃H₂₁NO requires: *m/z* = 207.162314 (Found: C, 75.28; H, 10.50; N, 7.85. C₁₃H₂₁NO requires: 75.32; H, 10.21; N, 6.76.) ¹H NMR and IR data for *ent*-2 were identical to the literature data for its (1*R*,3*E*,4*S*)-enantiomer 2.²¹

5.3. (*E*)-3-[(1*R*,4*S*)-1,7,7-Trimethyl-2-oxobicyclo[2.2.1]heptan-3-ylidene]acetonitrile 6

KCN (0.130 g, 2 mmol) was added to a solution of 2 (0.207 g, 1 mmol) in acetic acid (100%, 3 ml) and the mixture was stirred at rt for 120 h. Volatile components were evaporated in vacuo and the residue suspended in CH₂Cl₂ (50 ml). The so formed suspension was filtered, the undissolved material washed with CH₂Cl₂ (50 ml) and the filtrate evaporated in vacuo. The residue was purified by CC (Et₂O) and MPLC (dry filled column, EtOAc-hexanes, 1:10). Fractions containing the product were combined and evaporated in vacuo to give 6. Yield: 27 mg (14%) of a white solid; mp 40–45 °C, lit.²⁸ mp 46–47 °C; $[\alpha]_D^{23} = +183.7$ (c 0.40, CH₂Cl₂). ¹H NMR (DMSO-d₆): δ 0.75, 0.93, 0.99 (9H, 3s, 1:1:1, 3 × Me); 1.34–1.44, 1.78– 1.85 and 2.11–2.20 (4H, 3m, 2:1:1, 2×CH₂); 2.98 (1H, d, J = 4.1 Hz, H–C(4)); 6.20 (1H, d, J = 0.8 Hz, H–C(3')). ¹³C NMR (CDCl₃): δ 9.4, 18.2, 21.2, 26.4, 30.2, 46.2, 51.4, 58.5, 95.6, 116.4, 162.7, 204.2 (Found: C, 75.90; H, 8.24; N, 7.13. C₁₂H₁₅NO requires: 76.16; H, 7.99; N, 7.40.) v_{max} (KBr) 2962, 2222 (C=N), 1740 (C=O), 1645, 1450, 1375, 1323, 1257, 1107, 1065 cm⁻¹.

5.4. (1*R*,3*E*,4*S*)-1,7,7-Trimethyl-3-[(2-methyl-1*H*-indol-3-yl)methylidene]bicyclo[2.2.1]heptan-2-one 7

Hydrochloric acid (37%, 0.10 ml, \sim 1 mmol) was added to a solution of 2 (0.207 g, 1 mmol) and 2-methyl-1H-indole (0.131 g, 1 mmol) in anhydrous ethanol (3 ml) and the mixture was heated under reflux for 5 h. Volatile components were evaporated in vacuo and the residue was purified by CC (EtOAc-hexanes, 1:3). Fractions containing the product were combined and evaporated in vacuo to give 7. Yield: 247 mg (84%) of a yellow solid; mp 175–182 °C (diethyl ether–*n*-hexane); $[\alpha]_D^{22} = +261.9$ (*c* 0.26, CH₂Cl₂). ¹H NMR (CDCl₃): δ 0.85, 0.98, 1.04 (9H, 3s, 1:1:1, 3×Me); 1.50–1.59, 1.67–1.82 and 2.15–2.26 (4H, 3m, 1:2:1, $2 \times CH_2$; 2.48 (3H, s, Me); 3.04 (1H, d, J = 4.1 Hz, H-C(4)); 7.11-7.20 and 7.28-7.32 (3H, 2m, 2:1, 3H of indole); 7.44 (1H, s, H-C(3')); 7.67-7.70 (1H, m, 1H of indole); 8.30 (1H, s, NH). ¹³C NMR (CDCl₃): δ 9.9, 13.1, 18.9, 21.0, 27.6, 31.0, 47.0, 50.5, 58.0, 110.0, 111.2, 120.4, 120.7, 121.7, 122.3, 127.3 136.1, 138.3, 139.1, 208.9 (Found: C, 82.10; H, 8.00; N, 4.50. C₂₀H₂₃NO requires: 81.87; H, 7.90; N, 4.77.); v_{max} (KBr) 3242, 2957, 1700 (C=O), 1612, 1492, 1459, 1388, 1328, 1250, 1159, 1067 cm⁻¹.

5.5. General procedure for the preparation of (1*R*,3*E*,4*S*)-3-alkylidene-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ones 8a,c-i and (1*S*,3*E*,4*R*)-3-(4-fluorobenzylidene)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one *ent*-8h

A solution of 2 or its enantiomer *ent*-2 (1.037 g, 5 mmol) in anhydrous THF (15 ml) was cooled to -78 °C under argon and a solution of Grignard reagent in THF or Et₂O (15 mmol) then added slowly over a period of 5 min. The mixture was stirred at -78 °C for 1 h, warmed up to rt, and stirred at rt for an additional 24 h. Then saturated aq NH₄Cl (30 ml) was added, the mixture was stirred at rt for 1 h, poured into brine (70 ml) and the product extracted with CH₂Cl₂ (3 × 70 ml). The organic phases were combined, dried over anhydrous Na₂SO₄, filtered and the filtrate evaporated in vacuo to give the crude **8/8**′ and *ent*-**8/8′h**.[‡] The residue was purified by column chromatography (CC). Fractions containing the product were combined and evaporated in vacuo to give **8a,c–i** and *ent*-**8h**. The following compounds were prepared in this manner.

5.5.1. (1*R*,3*E*,4*S*)-3-Ethylidene-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one 8a and its (1*R*,3*Z*,4*S*)-isomer 8'a. Prepared from 2 and MeMgCl (3 M in THF); 8a:8'a = 98:2. CC (EtOAc-hexanes, 1:30) afforded isomerically pure 8a.

5.5.1.1. Data for the major (1R,3E,4S)-isomer **8a.** Yield: 0.829 g (93%) of a colourless oil, lit.⁵⁴ mp 28– 29 °C; **8a:8'a** = 100:0; $[\alpha]_D^{21} = +185.1$ (*c* 1.51, CHCl₃), lit.⁵⁴ $[\alpha]_D^{20} = +178.6$ (C₆H₆). *m/z* (EI) = 178 (M⁺); *m/z* (HRMS) found: 178.136120 (M⁺); C₁₂H₁₈O requires: *m/ z* = 178.135765. ¹H NMR (CDCl₃): δ 0.78, 0.96 (9H, 2s, 1:2, 3 × Me); 1.29–1.44 (2H, m, 2H of CH₂); 1.61–1.73 (1H, m, 1H of CH₂); 1.77 (3H, d, *J* = 7.2 Hz, Me); 1.95– 2.07 (1H, m, 1H of CH₂); 2.71 (1H, d, *J* = 4.1 Hz, H– C(4)); 6.42 (1H, dq, *J* = 0.7, 7.2 Hz, H–C(3')). ¹³C NMR (CDCl₃): δ 9.6, 14.5, 18.7, 20.8, 26.6, 30.8, 46.4, 47.6, 58.2, 125.7, 144.1, 207.4. *v*_{max} (NaCl) 2959, 1730 (C=O), 1667 (C=O), 1445, 1390, 1372, 1323, 1255, 1170, 1105, 1068, 933, 874, 795 cm⁻¹.

5.5.1.2. NMR data for the minor (1R,3Z,4S)-isomer 8'a. ¹H NMR (CDCl₃): δ 2.39 (1H, d, J = 4.1 Hz, H–C(4)); 5.83 (1H, q, J = 7.2 Hz, H–C(3')).

5.5.2. (1*R*,3*E*,4*S*)-3-Pentylidene-1,7,7-trimethyl-bicyclo[2.2.1]heptan-2-one 8c and its (1*R*,3*Z*,4*S*)-isomer 8'c. Prepared from 2 and *n*-BuMgCl (2 M in THF); 8c:8'c = 95:5. CC (EtOAc-hexanes, 1:30) afforded isomerically pure 8c.

5.5.2.1. Data for the major (1*R*,3*E*,4*S*)-isomer 8c. Yield: 1.047 g (95%) of a colourless oil, lit.⁵⁵ bp 139– 141 °C/12 Torr; 8c:8'c = 100:0; $[\alpha]_D^{21} = +158.9$ (*c* 0.53, CHCl₃), lit.⁵⁵ $[\alpha]_D^{20} = +116.5$ (neat). *m/z* (EI) = 220 (M⁺); *m/z* (HRMS) found: 220.183450 (M⁺); C₁₅H₂₄O requires: *m/z* = 220.182716. ¹H NMR (CDCl₃): δ 0.78 (3H, s, Me);

^{‡1}H NMR of the residue was taken in order to establish the isomer composition. NMR data for the minor isomers **8'a,c,d** were acquired from these spectra.

0.90 (3H, t, J = 7.2 Hz, CH₂CH₂CH₂CH₃); 0.96, 0.97 (6H, 2s, 1:1, 2 × Me); 1.26–1.47 (6H, m, 6H of CH₂); 1.64–1.73 (1H, m, 1H of CH₂); 1.95–2.05 (1H, m, 1H of CH₂); 2.13 (2H, deg q, J = 7.2, 7.5 Hz, CH₂CH₂CH₂CH₃); 2.69 (1H, d, J = 3.8 Hz, H–C(4)); 6.36 (1H, dq, J = 0.7; 7.7 Hz, H– C(3')). ¹³C NMR (CDCl₃): δ 9.5, 14.2, 18.6, 20.8, 22.7, 26.8, 28.7, 30.7, 31.3, 46.3, 47.9, 58.1, 130.8, 143.2, 207.5. v_{max} (NaCl) 2959, 1732 (C=O), 1666, 1453, 1389, 1371, 1324, 1255, 1106, 1069, 1010, 940 cm⁻¹.

5.5.2.2. NMR data for the minor (1*R*,3*Z*,4*S*)-isomer **8'c.** ¹H NMR (CDCl₃): δ 0.81, 0.91, 0.93 (9H, 3s, 1:1:1, $3 \times \text{Me}$); 2.39 (1H, d, J = 4.1 Hz, H–C(4)); 2.50–2.77 (2H, m, CH₂CH₂CH₂CH₃); 5.75 (1H, t, J = 7.9 Hz, H–C(3')). ¹³C NMR (CDCl₃): δ 9.7, 14.3, 18.9, 20.8, 22.7, 27.7, 28.0, 30.3, 31.9, 46.5, 53.0, 59.7, 136.8, 141.8, 209.2.

5.5.3. (1*R*,3*E*,4*S*)-3-Cyclopentylmethylidene-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one 8d and its (1*R*,3*Z*,4*S*)-isomer 8'd. Prepared from 2 and cyclopentylmagnesium chloride (2 M in Et₂O); 8d:8'd = 85:15. CC (EtOAc-hexanes, 1:40) afforded isomerically pure 8d.

5.5.3.1. Data for the major (1R,3E,4S)-isomer 8d. Yield: 0.593 g (51%) of a colourless oil; 8d:8'd = 100:0; $[\alpha]_{21}^{21} = +162.6$ (*c* 0.83, CHCl₃). *m/z* (EI) = 232 (M⁺); *m/z* (HRMS) found: 232.183450 (M⁺); C₁₆H₂₄O requires: *m/z* = 232.182716. ¹H NMR (CDCl₃): δ 0.78, 0.95, 0.96 (9H, 3s, 1:1:1, 3 × Me); 1.25–1.45 (4H, m, 4H of CH₂); 1.52–1.87 (7H, m, 7H of CH₂); 1.95–2.08 (1H, m, 1H of CH₂); 2.54–2.68 (1H, m, H–C(1) of cyclopentyl); 2.71 (1H, d, *J* = 4.1 Hz, H–C(4)); 6.29 (1H, d, *J* = 9.4 Hz, H–C(3')). ¹³C NMR (CDCl₃): δ 9.6, 18.7, 20.9, 25.8, 25.9, 27.1, 30.8, 33.6, 33.7, 40.0, 46.4, 48.2, 58.2, 135.8, 141.8, 208.1. v_{max} (NaCl) 2958, 1731 (C=O), 1664 (C=O), 1474, 1451, 1390, 1370, 1327, 1254, 1107, 1064, 1012, 950, 800 cm⁻¹.

5.5.3.2. Data for the minor (1R,3Z,4S)-isomer 8'd. ¹H NMR (CDCl₃): δ 0.81, 0.91, 0.93 (9H, 3s, 1:1:1, 3Me); 2.37 (1H, d, J = 3.8 Hz, H–C(4)); 3.71–3.85 (1H, m, H–C(4')); 5.65 (1H, d, J = 9.8 Hz, H–C(3')). ¹³C NMR (CDCl₃): δ 9.7, 18.9, 20.9, 25.8, 25.9, 27.7, 30.3, 33.8, 33.9, 38.6, 46.4, 52.9, 59.6, 140.4, 141.6, 209.0.

5.5.4. (1*R*,3*E*,4*S*)-3-Benzylidene-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one 8e. Prepared from 2 and phenylmagnesium bromide (1 M in THF); 8e:8'e = 100:0; CC (EtOAc-hexanes, 1:15). Yield: 1.094 g (91%) of a white solid; mp 74– 75 °C (from *n*-heptane at -20 °C), lit.⁵⁶ mp 71–73 °C; $[\alpha]_D^{21} = +446.6$ (*c* 0.30, CHCl₃), lit.⁵⁶ $[\alpha]_D^{20} = +418$ (EtOH), lit.⁵⁴ $[\alpha]_D^{20} = +426.6$ (C₆H₆). *m/z* (EI) = 240 (M⁺); *m/z* (HRMS) found: 240.151950 (M⁺); C₁₇H₂₀O requires: *m/z* = 240.151415. ¹H NMR (CDCl₃): δ 0.81, 1.00, 1.03 (9H, 3s, 1:1:1, 3 × Me); 1.48–1.64 (2H, m, 2H of CH₂); 1.74–1.82 (1H, m, 1H of CH₂); 2.10–2.24 (1H, m, 1H of CH₂); 3.11 (1H, d, *J* = 4.1 Hz, H–C(4)); 7.24 (1H, s, H–C(3')); 7.30–7.42 (3H, m, 3H of Ph); 7.45–7.50 (2H, m, 2H of Ph). ¹³C NMR (CDCl₃): δ 9.7, 18.7, 21.0, 26.4, 31.1, 47.1, 49.6, 57.5, 127.9, 129.0, 129.1, 130.2, 136.1, 142.5, 208.5 (Found: C, 84.40; H, 8.35. C₁₇H₂₀O requires: C, 84.96; H, 8.39.) v_{max} (KBr) 2959, 1726 (C=O), 1643, 1493, 1447, 1388, 1367, 1325, 1257, 1059, 1017, 926, 748, 693 cm^{-1} .

5.5.5. (1R,3E,4S)-3-(2-Methylbenzylidene)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one 8f. Prepared from 2 and 2methylphenylmagnesium chloride (1 M THF): in 8f:8'f = 100:0; CC (EtOAc-hexanes, 1:30). Yield: 1.145 g (90%) of a white solid; mp 77-78 °C (from n-heptane at $(-20 \text{ °C}); \ [\alpha]_{\text{D}}^{21} = +397.1 \ (c \ 0.24, \text{ CHCl}_3). \ m/z \ (\text{EI}) = 254$ (M^+) ; m/z (HRMS) found: 254.168110 (M⁺); C₁₈H₂₂O requires: m/z = 254.167066. ¹H NMR (CDCl₃): δ 0.81, 0.98, 1.03 (9H, 3s, 1:1:1, 3 × Me); 1.49–1.64 (2H, m, 2H of CH₂); 1.74-1.85 (1H, m, 1H of CH₂); 2.08-2.22 (1H, m, 1H of CH₂); 2.35 (3H, s, Me); 2.93 (1H, d, J = 4.5 Hz, H–C(4)); 7.17–7.24 (3H, m, 3H of Ar); 7.29–7.34 (1H, m, 1H of Ar); 7.41 (1H, s, H–C(3')). ¹³C NMR (CDCl₃): δ 9.72, 18.7, 20.4, 21.0, 26.7, 31.0, 46.9, 49.2, 57.9, 126.0, 126.2, 128.9, 130.8, 135.1, 138.5, 143.2, 208.4 (Found: C, 84.41; H, 8.60. C₁₈H₂₂O requires: C, 84.99; H, 8.72.) v_{max} (KBr) 2957, 1723 (C=O), 1638, 1473, 1440, 1400, 1390, 1323, 1288, 1257, 1154, 1105, 1067, 1015, 961, 914, 805, 747, 720 cm^{-1} .

5.5.6. (1R,3E,4S)-3-(4-Methylbenzylidene)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one 8g. Prepared from 2 and 4methylphenylmagnesium bromide $(1 \text{ M} \text{ in } \text{Et}_2 \text{O});$ 8g:8'g = 100:0; CC (EtOAc-hexanes, 1:20). Yield: 1.182 g(93%) of a white solid; mp 94–98 °C (from *n*-heptane at –20 °C), lit.³¹ mp 98.5–99.5 °C; $[\alpha]_D^{21} = +458.1$ (*c* 0.28, CHCl₃), lit.³¹ $[\alpha]_D^{24} = +412$ (*c* 1.35, C64₆). *m/z* (EI) = 254 (M⁺); m/z (HRMS) found: 254.167550 (M⁺); C₁₈H₂₂O requires: m/z = 254.167066. ¹H NMR (CDCl₃): δ 0.80, 0.99, 1.03 (9H, 3s, 1:1:1, 3 × Me); 1.46–1.62 (2H, m, 2H of CH₂); 1.73-1.84 (1H, m, 1H of CH₂); 2.12-2.22 (1H, m, 1H of CH₂); 2.37 (3H, s, Me); 3.10 (1H, d, J = 4.1 Hz, H–C(4)); 7.18 (1H, s, H-C(3')); 7.19-7.21 (2H, m, 2H of Ar); 7.36-7.40 (2H, m, 2H of Ar). ¹³C NMR (CDCl₃): δ 9.7, 18.8, 21.0, 21.8, 26.4, 31.2, 47.1, 49.7, 57.5, 128.0, 129.8, 130.2, 133.3, 139.3, 141.7, 208.6 (Found: C, 84.42; H, 8.86. C₁₈H₂₂O requires: C, 84.99; H, 8.72.) v_{max} (KBr) 2961, 1721 (C=O), 1642, 1608, 1511, 1444, 1324, 1254, 1152, 1106, 1064, 1015, 959, 919, 814 cm⁻¹.

5.5.7. (1R,3E,4S)-3-(4-Fluorobenzylidene)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one 8h. Prepared from 2 and 4-fluorophenylmagnesium bromide (2 M in Et_2O); **8h:8'h** = 100:0; CC (EtOAc-hexanes, 1:30). Yield: 1.176 g (91%) of a white solid; mp 97–99 °C (from *n*-heptane at -20 °C), lit.⁵⁷ mp 97 °C; $[\alpha]_D^{21} = +413.4$ (*c* 0.19, CHCl₃), lit.⁵⁷ $[\alpha]_D^{20} = +387.5$ (dioxane). *m/z* (EI) = 258 (M⁺). ¹H NMR (CDCl₃): δ 0.80, 1.00, 1.03 (9H, 3s, 1:1:1, $3 \times Me$); 1.47-1.61 (2H, m, 2H of CH₂); 1.75–1.85 (1H, m, 1H of CH₂); 2.11–2.23 (1H, m, 1H of CH₂); 3.05 (1H, d, J = 4.1 Hz, H–C(4)); 7.04-7.11 (2H, m, 2H of Ar); 7.19 (1H, s, H-C(3')); 7.42-7.48 (2H, m, 2H of Ar). ¹³C NMR (CDCl₃): δ 9.6, 18.7, 20.9, 26.3, 31.1, 47.1, 49.5, 57.5, 116.1 (d, J = 86.9 Hz), 126.7, 131.9 (d, J = 32.0 Hz), 132.2 (d, J = 11.4 Hz), 142.2 (d, J = 9.2 Hz), 163.2 (d, J = 994.2 Hz), 208.3 (Found: C, 78.72; H, 7.37. C₁₇H₁₉FO requires: C, 79.04; H, 7.41.) v_{max} (KBr) 2963, 1712 (C=O), 1641, 1601, 1508, 1369, 1325, 1228, 1163, 1104, 1065, 1016, 963, 914, 868, 841, 820 cm^{-1} .

5.5.8. (1*S*,3*E*,4*R*)-3-(4-Fluorobenzylidene)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one *ent*-8h. Prepared from *ent*-2 and 4-fluorophenylmagnesium bromide (2 M in Et₂O); *ent*-8h:*ent*-8'h = 100:0; CC (EtOAc-hexanes, 1:30). Yield: 1.240 g (96%) of a white solid; $[\alpha]_D^{21} = -399.4$ (*c* 0.34, CHCl₃). *m/z* (EI) = 258 (M⁺); *m/z* (HRMS) found: 258.142440 (M⁺); C₁₇H₁₉FO requires: *m/z* = 258.141994 (Found: C, 79.26; H, 7.62. C₁₇H₁₉FO requires: C, 79.04; H, 7.41.). ¹H NMR and IR spectral data were identical to those given above for its enantiomer 8h (see Section 5.5.7).

5.5.9. (1R,3E,4S)-3-[3,5-Bis(trifluoromethyl)benzylidene]-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one **8i.** Prepared from 2 and 3.5-bis(trifluoromethyl)phenyl]magnesium bromide (0.5 M in THF); 8i:8'i = 100:0; CC (EtOAc-hexanes, 1:15). Yield: 1.318 g (70%) of a dirty white solid; mp 85– 87 °C (from *n*-heptane at -20 °C); $[\alpha]_{D}^{21} = +242.0$ (*c* 0.27, CHCl₃). m/z (EI) = 376 (M⁺); m/z (HRMS) found: 376.127320 (M⁺); $C_{19}H_{18}F_6O$ requires: m/z = 376.126185. ¹H NMR (CDCl₃): δ 0.82, 1.04, 1.05 (9H, 3s, 1:1:1, 3×Me); 1.51-1.64 (2H, m, 2H of CH₂); 1.79-1.90 (1H, m, 1H of CH₂); 2.18–2.30 (1H, m, 1H of CH₂); 3.00 (1H, d, J = 4.1 Hz, H–C(4)); 7.24 (1H, s, H–C(3')); 7.82–7.85 (3H, m, 3H of Ar). ¹³C NMR (CDCl₃): δ 9.4, 18.4, 20.9, 26.1, 30.8, 47.0, 49.5, 57.5, 122.1-122.3 (m), 123.5 (q, J = 1084.5 Hz, 124.2, 129.3–129.5 (m), 132.5 (q, J = 133.7 Hz), 138.3, 145.9, 207.3 (Found: C, 60.81; H, 4.89. C₁₉H₁₈F₆O requires: C, 60.64; H, 4.82.) v_{max} (KBr) 2965, 1732 (C=O), 1652, 1617, 1468, 1450, 1386, 1350, 1327, 1280, 1210, 1136, 1107, 1065, 1019, 982, 949, 899, 847, 706, 679 $\rm cm^{-1}$.

5.6. *N*-Methyl-*N*-{[(1*R*,4*E*,5*S*)-1,8,8-trimethyl-3-oxo-2-oxa-bicyclo[3.2.1]octan-4-ylidene]methyl}nitrous amide 11

tert-Butyl nitrite (92%, 0.2 ml, \sim 1.5 mmol) was added to a solution of 3 (0.223 g, 1 mmol) in anhydrous dichloromethane (4 ml), followed by the addition of trifluoroacetic acid $(0.5 \text{ ml}, \sim 6.5 \text{ mmol})$ and the mixture was stirred at rt for 24 h. Volatile components were evaporated in vacuo and the residue purified by CC (EtOAc-hexanes, 1:4). Fractions containing the product were combined and evaporated in vacuo to give 11. Yield: 119 mg (50%) of a yellow oil; $[\alpha]_{D}^{22} = +462.3$ (*c* 0.22, CH₂Cl₂). *m/z* $(EI) = 209 (M^+); m/z (FAB) = 239 (MH^+).$ ¹H NMR (CDCl₃): δ 1.01, 1.03, 1.36 (9H, 3s, 1:1:1, 3 × Me); 1.65– 1.76 and 2.04–2.30 (4H, 2m, 1:3, 2×CH₂); 3.15 (1H, d, J = 6.0 Hz, H–C(5)); 3.24 (3H, s, NMe); 7.95 (1H, s, H– C(4')). ¹³C NMR (CDCl₃): δ 18.6, 18.9, 23.7, 28.5, 34.6, 37.1, 44.7, 47.9, 93.6, 122.8, 136.0, 167.2 (Found: C, 59.96; H, 7.51; N, 13.10. C₁₂H₁₈N₂O₃ requires: 60.49; H, 7.61; N, 11.76.) v_{max} (NaCl) 2974, 1713 (C=O), 1634, 1470, 1274, 1204, 1147, 1067, 1019, 972, 944, 904 cm⁻¹.

5.7. General procedure for catalytic hydrogenation of alkylidene compounds 3, 4b, 7 and 11

A mixture of methylidene compound 3, 4b, 7 or 11 (1 mmol) and 10% Pd–C (60–100 mg) in anhydrous *n*-propanol or ethanol (15 ml) was hydrogenated in an autoclave (50 bar of H₂, 35–60 °C) for 24–120 h. The reaction mix-

ture was filtered through a short pad of Celite[®], washed with ethanol (50 ml) and the filtrate evaporated in vacuo. The residue was purified by CC or/and crystallisation. Fractions containing the product were combined and evaporated in vacuo to give 13/13', 14/14', 15 and 17/17'. The following compounds were prepared in this manner.

5.7.1. (1*R*,4*R*,5*R*)-1,4,8,8-Tetramethyl-2-oxabicyclo[3.2.1]octan-3-one 13 and its (1*R*,4*S*,5*R*)-isomer 13'. Prepared from compound 3 (0.223 g, 1 mmol) in *n*-propanol; 10% Pd–C (90 mg); 60 °C, 120 h; CC (EtOAc–hexanes, 1:7). Yield: 151 mg (83%) of a colourless oil; 13:13' = 64:36 (28% de); $[\alpha]_D^{19} = -31.4$ (*c* 0.17, CHCl₃). *m/z* (EI) = 182 (M⁺); *m/z* (HRMS) found: 182.131020 (M⁺); C₁₁H₁₈O₂ requires: *m/z* = 182.130680. ¹³C NMR (CDCl₃): δ 14.3, 17.4, 17.8, 18.5, 19.6, 20.2, 24.0, 24.1, 30.4, 36.3, 38.6, 43.9, 44.3, 45.4, 48.3, 48.7, 92.5, 93.2, 175.0, 175.5 (Found: C, 70.34; H, 9.70; N, 4.40. C₁₁H₁₈O₂ requires: C, 72.49; H, 9.95; N, 0.00.) ν_{max} (NaCl) 2980, 1725 (C=O), 1472, 1395, 1377, 1343, 1252, 1223, 1148, 1060, 1012 cm⁻¹.

5.7.1.1. Data for the major (1R,4R,5R)-isomer 13. ¹H NMR (CDCl₃): δ 0.97, 1.06, 1.30 (9H, 3s, 1:1:1, 3 × Me); 1.38 (3H, d, J = 7.5 Hz, Me); 1.47–1.56 (1H, m, 1H of CH₂); 1.80 (1H, d, J = 5.3 Hz, H–C(5)); 1.91–2.20 (3H, m, 3H of CH₂); 2.49 (1H, q, J = 7.5 Hz, H–C(4)).

5.7.1.2. Data for the minor (1R,4S,5R)-isomer 13'. ¹H NMR (CDCl₃): δ 1.02, 1.09 (6H, 2s, 1:1, 2×Me); 1.23 (3H, d, J = 7.2 Hz, Me); 1.27 (3H, s, Me); 2.87 (1H, ddq, J = 1.7, 4.8, 7.2 Hz, H–C(4)).

5.7.2. (1*R*,4*R*,5*R*)-4-Propyl-1,8,8-trimethyl-2-oxabicyclo-[3.2.1]octan-3-one 14 and its (1*R*,4*S*,5*R*)-isomer 14'. Prepared from compound 4b (0.208 g, 1 mmol) in ethanol; 10% Pd–C (60 mg); 50 °C, 24 h. Yield: 206 mg (98%) of a white solid; 14:14' = 88:12 (76% de). Crystallisation from a mixture of diethyl ether and *n*-heptane afforded isomerically pure 14.

5.7.2.1. Data for the major (1R,4R,5R)-isomer 14. Yield: 112 mg (53%) of a white solid; 14:14' = 100:0; mp 92–95 °C (Et₂O–*n*-heptane); $[\alpha]_D^{23} = -11.9$ (*c* 0.19, CHCl₃). ¹H NMR (CDCl₃): δ 0.93 (3H, t, J = 7.2 Hz, CH₂CH₂CH₃); 0.97, 1.04, 1.29 (9H, 3s, 1:1:1, 3 × Me); 1.36–1.57 (4H, m, CH₂CH₂CH₃); 1.90–2.20 (5H, m, 2 × CH₂, H–C(5)); 2.27 (1H, dd, J = 4.1, 8.7 Hz, H–C(4)). ¹³C NMR (CDCl₃): δ 14.2, 19.0, 19.1, 22.1, 24.7, 31.0, 36.6, 37.0, 44.3, 46.5, 51.5, 92.7, 175.9 (Found: C, 73.96; H, 10.83; N, 0.00. C₁₃H₂₂O₂ requires: C, 74.24; H, 10.54; N, 0.00.) v_{max} (KBr) 2985, 1715 (C=O), 1467, 1450, 1394, 1382, 1335, 1265, 1239, 1222, 1205, 1153, 1072, 1020 cm⁻¹.

5.7.2.2. Data for the minor (1R,4S,5R)-isomer 14'. ¹H NMR (CDCl₃): δ 1.03, 1.07, 1.27 (9H, 3s, 1:1:1, 3 × Me); 2.66 (1H, ddt, J = 1.6, 4.5, 5.8 Hz, H–C(4)).

5.7.3. (1*R*,3*R*,4*R*)-3-[(2-Methyl-1*H*-indol-3-yl)methyl]-1,7,7trimethylbicyclo[2.2.1]heptan-2-one 15. Prepared from compound 7 (0.293 g, 1 mmol) in ethanol; 10% Pd–C (100 mg); 50 °C, 24 h; CC (EtOAc–hexanes, 1:2). Yield: 254 mg (86%) of a colourless oil; $[\alpha]_D^{23} = +12.1$ (*c* 0.78, CHCl₃). *m/z* (EI) = 295 (M⁺); *m/z* (HRMS) found: 295.194260 (M⁺); C₂₀H₂₅NO requires: *m/z* = 295.193615. ¹H NMR (CDCl₃): δ 0.92, 0.95, 1.05 (9H, 3s, 1:1:1, 3 × Me); 1.09–1.17, 1.38–1.49, 1.54–1.64 and 1.78–1.89 (4H, 4m, 1:1:1:1, 2 × CH₂); 1.93 (1H, d, *J* = 4.1 Hz, H–C(4)); 2.21 (1H, dd, *J* = 9.8; 3.8 Hz, H–C(3)); 2.36 (3H, s, Me); 2.66 (1H, dd, *J* = 14.7; 9.8 Hz, H_a–C(3')); 3.25 (1H, dd, *J* = 14.7; 3.8 Hz, H_b–C(3')); 7.04–7.12, 7.21–7.24 and 7.50–7.53 (4H, 3m, 2:1:1, 4H of indole); 7.88 (1H, br s, NH). ¹³C NMR (CDCl₃): δ 9.9, 12.2, 21.0, 22.4, 26.4, 29.7, 29.8, 47.3, 47.6, 56.9, 58.2, 110.7, 111.5, 118.4, 119.6, 121.4, 128.9, 131.6, 135.8, 221.9. ν_{max} (NaCl) 3403, 2959, 1729 (C=O), 1462, 1445, 1385, 1301, 1239, 1101, 1074, 1018 cm⁻¹.

5.7.4. (1*R*,4*E*,5*S*)-4-[(Methylamino)methylidene]-1,8,8-trimethyl-2-oxabicyclo]3.2.1]octan-3-one 17 and its (1*R*,4*Z*, 5*S*)-isomer 17'. Prepared from compound 11 (0.238 g, 1 mmol) in *n*-propanol; 10% Pd–C (80 mg); 35 °C, 48 h; CC (EtOAc). Yield: 203 mg (97%), 17:17' = 77:23. Crystallisation from CH₂Cl₂-*n*-hexane gave isomerically enriched 17. Yield: 172 mg (82%) of a white solid; 17:17' = 95:5; mp 140–150 °C; $[\alpha]_D^{20} = +155.9$ (*c* 0.26, CH₂Cl₂) (Found: C, 69.00; H, 8.83; N, 6.55. C₁₂H₁₉NO₂ requires: C, 68.87; H, 9.15; N, 6.69.) v_{max} (KBr) 3304, 2985, 1683 (C=O), 1579, 1430, 1277, 1171, 1133, 1060, 1007, 970 cm⁻¹.

5.7.4.1. Data for the major (1*R*,4*E*,5*S*)-isomer 17. ¹H NMR (CDCl₃): δ 0.99, 1.28 (9H, 2s, 2:1, 3 × Me); 1.46–1.61 and 1.89–2.21 (4H, 2m, 1:3, 2 × CH₂); 2.25 (1H, d, J = 4.9 Hz, H–C(5)); 2.97 (3H, d, J = 4.5 Hz, *Me*NH); 4.15 (1H, br s, NH); 7.33 (1H, d, J = 14.3 Hz, H–C(4')). ¹³C NMR (CDCl₃): δ 18.8, 19.0, 23.8, 32.4, 35.1, 38.1, 43.5, 50.3, 91.0, 97.2, 151.1, 170.3.

5.7.4.2. Data for the minor (1R,4Z,5S)-isomer 17'. ¹H NMR (CDCl₃): δ 0.96, 0.98, 1.27 (9H, 3s, 1:1:1, 3 × Me); 2.93 (1H, d, J = 4.9 Hz, MeNH); 6.38 (1H, d, J = 12.8 Hz, H–C(4')); 7.79 (1H, br s, NH).

5.8. General procedure for 1,3-dipolar cycloadditions of 2,4,6-trimethoxybenzonitrile oxide 18a to alkylidene compounds 4b,c,h, 5 and 6

A mixture of alkylidene compound **4b**,c,h, **5** or **6** (1 mmol) and 2,4,6-trimethoxybenzonitrile oxide **18a** (0.209 g, 1 mmol) in anhydrous toluene (6 ml) or decalin (4 ml) was heated at 65 °C or at reflux for 4–36 h. Volatile components were evaporated in vacuo and the residue[§] purified by CC and MPLC (dry filled column). Fractions containing the product were combined and evaporated in vacuo to give **19–22**. The following compounds were prepared in this manner. 5.8.1. (1*R*,4*R*,4'*S*,5*S*)-3'-(2,4,6-Trimethoxyphenyl)-1,8,8-trimethyl-3-oxo-4'*H*-2-oxaspiro[bicyclo[3.2.1]octane-4,5'-isoxazole]-4'-carbonitrile 19 and (1*R*,4*E*,5*S*)-4-{[3-(2,4,6-trimethoxyphenyl)-1,2,4-oxadiazol-5-yl]mehyilidene}-1,8,8-trimethyl-2-oxabicyclo[3.2.1]octan-3-one 20. Prepared from compound 5 (0.205 g, 1 mmol) in toluene; reflux for 4 h; 19:20 = 64:36; CC (EtOAc-hexanes, 1:2). Yield: 191 mg (46%) of a greyish solid (Found: C, 63.97; H, 6.46; N, 6.52. $C_{22}H_{26}N_2O_6$ requires: 63.76; H, 6.32; N, 6.76.) Further purification by MPLC (EtOAc-hexanes, 1:2) afforded pure compound 19.

5.8.1.1. Data for the major compound 19. Yield: 50 mg (12%) of a white solid; mp 183–185 °C; $[\alpha]_D^{22} = -338.3$ (*c* 0.09, CHCl₃). *m/z* (EI) = 414 (M⁺); *m/z* (FAB) = 415 (MH⁺); *m/z* (HRMS) found: 414.180250 (M⁺); C₂₂H₂₆N₂O₆ requires: *m/z* = 414.179087. ¹H NMR (CDCl₃): δ 1.11, 1.19, 1.36 (9H, 3s, 1:1:1, 3Me); 1.99–2.29 and 2.46–2.61 (4H, 2m, 3:1, 2×CH₂); 2.77–2.82 (1H, m, H–C(5)); 3.84 (9H, s, 3×OMe); 5.19 (1H, s, H–C(4')); 6.15 (2H, s, C₆H₂) (Found: C, 63.83; H, 6.42; N, 6.67. C₂₂H₂₆N₂O₆ requires: 63.76; H, 6.32; N, 6.76.) ν_{max} (KBr) 2965, 2242 (C \equiv N), 1737 (C=O), 1608, 1587, 1471, 1459, 1416, 1343, 1261, 1237, 1212, 1193, 1161, 1130, 1067 cm⁻¹.

5.8.1.2. NMR data for the minor compound 20. ¹H NMR (CDCl₃): δ 1.03, 1.07, 1.38 (9H, 3s, 1:1:1, 3 × Me); 1.62–1.71 and 2.03–2.43 (4H, 2m, 1:3, 2 × CH₂); 3.79 and 3.88 (9H, 2s, 2:1, 3 × OMe); 4.03 (1H, br d, J = 6.4 Hz, H–C(5)); 6.21 (2H, s, C₆H₂); 7.55 (1H, s, H–C(4')).

(1*R*,3*E*,4*S*)-3-{[3-(2,4,6-Trimethoxyphenyl)-1,2, 5.8.2. 4-oxadiazol-5-yl]methylidene}-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one 21. Prepared from compound 6 (0.189 g, 1 mmol) in toluene; reflux for 5 h; CC (EtOAc-hexanes, 1:3) and MPLC (EtOAc-hexanes, 1:4). Yield: 159 mg (40%) of a greyish solid; mp 90–95 °C (Et₂O); $[\alpha]_{D}^{21} = -346.6$ (c 0.32, CH₂Cl₂). ¹H NMR (CDCl₃): δ 0.86, 1.04, 1.05 (9H, 3s, 1:1:1, $3 \times Me$); 1.47–1.60, 1.76– 1.84 and 2.17-2.25 (4H, 3m, 2:1:1, 2×CH₂); 3.69 (1H, d, J = 4.1 Hz, H–C(4)); 3.78 and 3.86 (9H, 2s, 2:1, $3 \times OMe)$; 6.20 (2H, s, C₆H₂); 7.09 (1H, d, J = 0.8 Hz, H–C(3')). ¹³C NMR (CDCl₃): δ 9.6, 18.4, 21.4, 26.4, 30.7, 46.3, 50.8, 55.9, 56.5, 58.0, 91.3, 108.8, 153.8, 160.6, 163.8, 165.3, 174.1, 207.0 (Found: C, 66.60; H, 6.80; N, 6.93. C₂₂H₂₆N₂O₅ requires: 66.32; H, 6.58; N, 7.03.) v_{max} (KBr) 2969, 1753 (C=O), 1608, 1470, 1416, 1340, 1232, 1207, 1159, 1130 cm^{-1} .

5.8.3. (1*R*,4*R*,4'*R*,5*S*)-4'-Ethyl-3'-(2,4,6-trimethoxyphenyl)-**1**,8,8-trimethyl-4'*H*-2-oxaspiro[bicyclo-[3.2.1]octane-4,5'-isoxazol]-3-one **22b.** Prepared from compound **4b** (0.208 g, 1 mmol) in decalin; reflux for 6 h; CC (EtOAc–hexanes, 1:1) then MPLC (EtOAc–hexanes, 1:2). Yield: 33 mg (8%) of a white solid; **22b:22'b** = 100:0 (100% de); mp 145–152 °C; $[\alpha]_D^{23} = -402.2$ (*c* 0.09, CHCl₃). *m*/*z* (EI) = 417 (M⁺). ¹H NMR (CDCl₃): δ 0.71 (3H, t, *J* = 7.5 Hz, CH₂CH₃); 1.05, 1.10, 1.31 (9H, 3s, 1:1:1, 3 × Me); 1.36– 1.68 and 1.90–2.05 (4H, 2m, 1:1, 2 × CH₂); 2.12–2.27 (1H, m, 1H of CH₂); 2.48–2.57 (2H, m, 1H of CH₂, H– C(5)); 3.81 and 3.83 (9H, 2s, 2:1, 3 × OMe); 3.87 (1H, dd,

^{§&}lt;sup>1</sup>H NMR spectra of the crude reaction mixtures before chromatographic separation were taken in order to establish the de as accurately as possible. In the case of very complex spectra, the de were determined after the chromatographic purification.

J = 3.4; 8.7 Hz, H–C(4')); 6.14 (2H, s, C₆H₂) (Found: C, 65.91; H, 7.68; N, 3.57. C₂₃H₃₁NO₆ requires: 66.17; H, 7.48; N, 3.35.) v_{max} (KBr) 2978, 1733 (C=O), 1624, 1605, 1584, 1465, 1416, 1228, 1205, 1155, 1126 cm⁻¹.

5.8.4. (1*R*,4*R*,4'*R*,5*S*)-4'-Butyl-3'-(2,4,6-trimethoxyphenyl)-1,8,8-trimethyl-4'H-2-oxaspiro[bicyclo-[3.2.1]octane-4,5'-isoxazoll-3-one 22c. Prepared from compound 4c (0.236 g, 1 mmol) in decalin; reflux for 6 h; CC (CHCl₃-MeOH, $100:1 \rightarrow 20:1$) and MPLC (EtOAc-hexanes, 1:2). Yield: 45 mg (10%) of a white solid; 22c:22'c = 100:0 (100% de); mp 145–151 °C; $[\alpha]_D^{23} = -358.7$ (*c* 0.14, CHCl₃). *m/z* (EI) = 445 (M⁺); *m/z* (HRMS) found: 445.247500 (M⁺); C₂₅H₃₅NO₆ requires: *m/z* = 445.246438. ¹H NMR (CDCl₃): $\delta 0.72$ (3H, t, J = 7.2 Hz, CH₂CH₂CH₂CH₃); 0.96-1.20 (4H, m, $2 \times CH_2$); 1.05, 1.09, 1.31 (9H, 3s, 1:1:1, 3Me); 1.36-1.54 and 1.89-2.05 (4H, 2m, 1:1, 2×CH₂); 2.11–2.26 (1H, m, 1H of CH₂); 2.49–2.56 (2H, m, 1H of CH₂, H-C(5)); 3.80 and 3.83 (9H, 2s, 2:1, $3 \times OMe$); 3.86 (1H, dd, J = 3.0; 8.7 Hz, H–C(4')); 6.13 (2H, s, C₆H₂) (Found: C, 67.66; H, 8.12; N, 3.13. C₂₅H₃₅NO₆ requires: 67.39; H, 7.92; N, 3.14.) v_{max} (KBr) 2959, 1737 (C=O), 1606, 1585, 1464, 1415, 1383, 1228, 1206, 1158, 1130 cm^{-1} .

5.8.5. (1*R*,4*R*,4'*R*,5*S*)-4'-(4-Fluorophenyl)-3'-(2,4,6-trimethoxyphenyl)-1,8,8-trimethyl-4'*H*-2-oxaspiro[bicyclo[3.2.1]octane-4,5'-isoxazol]-3-one 22h and (1*R*,4*S*,4'*S*,5*S*)-isomer 22'h. Prepared from compound 4h (0.274 g, 1 mmol), in decalin; reflux for 6 h; 22h:22'h = 88:12 (76% de); CC (EtOAc-hexanes, 1:2). Yield: 237 mg (49%) of a white solid; 22h:22'h = 88:12 (76% de). Further purification by MPLC (EtOAc-hexanes, 1:3) afforded isomerically enriched 22h (first fraction) and isomerically pure 22'h (second fraction).

5.8.5.1. Data for the major (1R,4R,4'R,5S)-isomer **22h.** Yield: 169 mg (35%) of a white solid; **22h:22'h** = 97:3 (94% de); mp 95–105 °C; $[\alpha]_D^{21} = -352.9$ (*c* 0.14, CH₂Cl₂). ¹H NMR (CDCl₃): δ 0.73, 0.89, 1.28 (9H, 3s, 1:1:1, 3Me); 1.77–1.98 (2H, m, 2H of CH₂); 2.15–2.27 (2H, m, 1H of CH₂, H–C(5)); 2.48–2.56 (1H, m, 1H of CH₂); 3.73 and 3.75 (9H, 2s, 1:2, $3 \times \text{OMe}$); 5.20 (1H, s, H–C(4')); 5.98 (2H, s, C₆H₂); 6.85–7.23 (4H, m, C₆H₄) (Found: C, 67.11; H, 6.22; N, 2.96. C₂₇H₃₀FNO₆ requires: 67.07; H, 6.25; N, 2.90.) ν_{max} (KBr) 3416, 2980, 1738 (C=O), 1607, 1509, 1460, 1384, 1227, 1202, 1155, 1132 cm⁻¹.

5.8.5.2. Data for the minor (1R,4S,4'S,5S)-isomer **22'h.** Yield: 6 mg (1%) of a white solid; **22h:22'h** = 0:100 (100% de); mp 103–107 °C. m/z (EI) = 483 (M⁺); m/z (HRMS) found: 483.206950 (M⁺); C₂₇H₃₀FNO₆ requires: m/z = 483.205716. ¹H NMR (CDCl₃): δ 0.87 (3H, s, Me); 0.88–0.95 (1H, m, 1H of CH₂); 1.32 and 1.33 (6H, 2s, 1:1, 2 × Me); 1.45–1.54, 1.72–1.83 and 1.91–2.01 (3H, 3m, 1:1:1, 3H of CH₂); 2.08 (1H, d, J = 7.5 Hz, H–C(5)); 3.74 and 3.78 (9H, 2s, 1:2, 3 × OMe); 5.36 (1H, s, H–C(4')); 6.00 (2H, s, C₆H₂); 6.88–6.94 (2H, m, 2H of C₆H₄); 7.05–7.24 (2H, m, 2H of C₆H₄). v_{max} (KBr) 3417, 2936, 1734 (C=O), 1606, 1509, 1466, 1383, 1229, 1206, 1160, 1131 cm⁻¹.

5.9. General procedure for 1,3-dipolar cycloadditions of 2,4,6-trisubstituted benzonitrile oxides 18a,b to α -alkylidene camphors 8a,c,e-i and *ent*-8h

A mixture of alkylidene compound 8a,c,e-i or ent-8h (1 mmol) and 2,4,6-trimethoxybenzonitrile oxide 18a (0.251 g, 1.2 mmol) or 2,4,6-trimethylbenzonitrile oxide 18b (0.194 g, 1.2 mmol) in anhydrous anisole (5 ml) under argon was irradiated in a laboratory microwave oven (P = 300 W, T = 215 °C, P = 3-5 bar) for 3 h. Volatile components were evaporated in vacuo and the residue[§] purified by CC and MPLC (wet filled column). Fractions containing the product were combined and evaporated in vacuo to give diastereomerically pure compounds 23c and 24i and isomeric mixtures 23/23'a.e-i, ent-23/23'h and 24/ 24'f.h. Repeated crystallisation of isomeric mixtures afforded diastereomerically enriched compound 23/23'f (90%) de) and diastereomerically pure compounds 23a,e,g-i, ent-23h and 24f,h. The following compounds were prepared in this manner.

5.9.1. (1R,3R,4S,4'R)-1,4',7,7-Tetramethyl-3'-(2,4,6-trimethoxyphenyl)-4'*H*-spiro[bicyclo[2.2.1]heptane-3,5'-isoxazol]-2-one 23a and its (1R,3S,4S,4'S)-isomer 23'a. Prepared from 8a (0.178 g, 1 mmol) and 18a (0.251 g, 1.2 mmol); CC and MPLC (EtOAc-hexanes, 1:3). Yield: 105 mg (27%) of a white solid; 23a:23'a = 92:8 (84% de). Upon repeated crystallisation from EtOAc-*n*-heptane, diastereomerically pure compound 23a was obtained.

5.9.1.1. Data for major (1R, 3R, 4S, 4'R)-isomer **23a.** Yield: 0.023 g (6%) of a white solid; mp 169–173 °C; **23a**:23'a = 100:0 (100% de); $[\alpha]_D^{19} = -421.3$ (c 0.15, CHCl₃). m/z (EI) = 387 (M⁺); m/z (HRMS) found: (M^{+}) : 387.205540 $C_{22}H_{20}NO_5$ requires: m/z =387.204573. ¹H NMR (CDCl₃): δ 0.86, 0.95 (6H, 2s, 1:1, $2 \times Me$; 1.02 (3H, d, J = 7.5 Hz, Me); 1.04 (3H, s, Me); 1.64-1.88 (3H, m, 3H of CH₂); 2.26-2.35 (1H, m, 1H of CH₂); 2.39 (1H, d, J = 3.8 Hz, H–C(4)); 3.57 (1H, q, J = 7.5 Hz, H–C(4')); 3.81, 3.82 (9H, 2s, 2:1, 3×OMe); 6.13 (2H, s, C₆H₂). ¹³C NMR (CDCl₃): δ 10.0, 14.4, 19.3, 21.6, 21.7, 31.3, 43.9, 48.9, 50.0, 55.8, 56.6, 57.9, 90.2, 91.5, 100.7, 157.6, 160.6, 162.8, 215.7 (Found: C, 67.85; H, 7.62; N, 4.45. C₂₂H₂₉NO₅ requires: C, 68.20; H, 7.54; N, 3.61.) v_{max} (KBr) 2966, 1754 (C=O), 1604, 1586, 1456, 1412, 1343, 1225, 1205, 1157, 1126, 1007, 948, 884, 812, 746 cm^{-1} .

5.9.1.2. Data for minor (1*R*,3*S*,4*S*,4'*S*)-isomer 23'a. ¹H NMR (CDCl₃): δ 0.97 (3H, s, Me); 1.12 (3H, d, *J* = 7.2 Hz, Me); 1.20 (3H, s, Me); 3.43 (1H, q, *J* = 7.2 Hz, H–C(4')).

5.9.2. (1*R*,3*R*,4*S*,4′*R*)-4′-Butyl-3′-(2,4,6-trimethoxyphenyl)-1,7,7-trimethyl-4′*H*-spiro[bicyclo]2.2.1]heptane-3,5′-isoxazol]-2-one 23c. Prepared from 8c (0.220 g, 1 mmol) and 18a (0.251 g, 1.2 mmol); CC and MPLC (EtOAc-hexanes, 1:3). Yield: 48 mg (11%) of a colourless oil; 23c:23′c = 100:0 (100% de); $[\alpha]_D^{19} = -470.5$ (*c* 0.42, CHCl₃). *m*/*z* (EI) = 429 (M⁺); *m*/*z* (HRMS) found: 429.252750 (M⁺); C₂₅H₃₅NO₅ requires: *m*/*z* = 429.251524. ¹H NMR (CDCl₃): δ 0.73 (3H, deg t, *J* = 6.8, 7.2 Hz, CH₂CH₂CH₂CH₃; 0.84, 0.94, 1.04 (9H, 3s, 1:1:1, $3 \times Me$); 1.02–1.21 (4H, m, 4H of CH₂); 1.43–1.50 (2H, m, 2H of CH₂); 1.63–1.88 (3H, m, 3H of CH₂); 2.25–2.34 (1H, m, 1H of CH₂); 2.43 (1H, d, J = 3.8 Hz, H-C(4)); 3.60 (1H, deg t, J = 6.0, 5.7 Hz, H–C(4')); 3.81, 3.82 (9H, 2s, 2:1, $3 \times OMe$); 6.13 (2H, s, C₆H₂). ¹³C NMR (CDCl₃): δ 10.0, 14.2, 19.3, 21.7, 21.8, 23.2, 28.5, 29.1, 31.3, 44.0, 48.7, 53.7, 55.7, 56.6, 57.8. 90.4, 91.6, 101.9, 157.0, 160.5, 162.7, 215.5. v_{max} (KBr) 2960, 1751 (C=O), 1606, 1586, 1458, 1415, 1340, 1228, 1206, 1159, 1130, 1065, 1038, 1019, 944, 893, 814 cm⁻¹.

5.9.3. (1R,3R,4S,4'R)-4'-Phenyl-3'-(2,4,6-trimethoxyphenyl)-1,7,7-trimethyl-4'*H*-spiro[bicyclo]2.2.1]heptane-3,5'-isoxazol]-2-one 23e and its (1R,3S,4S,4'S)-isomer 23'e. Prepared from compound 8e (0.240 g, 1 mmol) and 18a (0.251 g, 1.2 mmol); 23e:23'e = 94.5:5.5 (89% de); CC and MPLC (EtOAc-hexanes, 1:2). Yield: 138 mg (30%) of a white solid; 23e:23'e = 95:5 (90% de). Repeated crystallisation of 23/23'e from EtOAc-*n*-hexane furnished diastereomerically pure compound 23e.

5.9.3.1. Data for major (1R,3R,4S,4'R)-isomer 23e. 0.050 g (11%) of a white solid; mp 222–225 °C; **23e:23'e** = 100:0 (100% de); $[\alpha]_D^{21} = -508.9$ (*c* 0.09, CHCl₃). *m/z* (EI) = 449 (M⁺); *m/z* (HRMS) found: 449.221820 (M⁺); C₂₇H₃₁NO₅ requires: *m/z* = 449.220223. ¹H NMR (CDCl₃): δ 0.70, 0.82, 0.95 (9H, 3s, 1:1:1, 3 × Me); 1.63– 1.88 (3H, m, 3H of CH₂); 2.02 (1H, d, *J* = 3.4 Hz, H– C(4)); 2.24–2.35 (1H, m, 1H of CH₂); 3.72, 3.74 (9H, 2s, 1:2, 3 × OMe); 4.80 (1H, s, H–C(4')); 5.97 (2H, s, Ar); 7.04–7.25 (5H, m, C₆H₂). ¹³C NMR (CDCl₃): δ 10.0, 19.0, 21.7, 22.5, 31.5, 44.0, 49.7, 55.6, 56.6, 58.6, 61.8, 91.1, 91.5, 101.0, 127.8, 128.2, 130.7, 136.1, 156.2, 160.4, 162.6, 215.3 (Found: C, 72.18; H, 6.97; N, 3.83. C₂₇H₃₁NO₅ requires: C, 72.14; H, 6.95; N, 3.12.) ν_{max} (KBr) 2966, 1752 (C=O), 1606, 1455, 1415, 1340, 1234, 1209, 1163, 1129, 1071, 1031, 819, 707 cm⁻¹.

5.9.3.2. Data for minor (1*R*,3*S*,4*S*,4'*S*)-isomer 23'e. ¹H NMR (CDCl₃): δ 0.92, 0.99, 1.22 (9H, 3s, 1:1:1, 3 × Me); 3.67, 3.72 (9H, 2s, 2:1, 3 × OMe); 4.61 (1H, s, H–C(4')).

5.9.4. (1R,3R,4S,4'R)-4'-(2-Methylphenyl)-3'-(2,4,6-trimethoxyphenyl)-1,7,7-trimethyl-4'H-spiro[bicyclo[2.2.1]heptane-3,5'-isoxazol]-2-one 23f and its (1R,3S,4S,4'S)-isomer 23'f. Prepared from 8f (0.254 g, 1 mmol) and 18a (0.251 g, 1.2 mmol); 23f:23'f = 83:17 (66% de); CC andMPLC (EtOAc-hexanes, 2:3). Yield: 177 mg (38%) of a white solid; 23f:23'f = 90:10 (80% de). Repeated crystallisation of 23/23'f from EtOAc-*n*-hexane furnished diastereomerically enriched compound **23f**. Yield: 0.047 g (10%) of a white solid; 23f:23'f = 95:5 (90% de); mp 249–252 °C; $[\alpha]_{D}^{21} = -533.6 \ (c \ 0.12, \ \text{CHCl}_3). \ m/z \ (\text{EI}) = 463 \ (\text{M}^+); \ m/z$ (HRMS) found: 463.236980 (M^+); $C_{28}H_{33}NO_5$ requires: m/z = 463.235874 (Found: C, 71.90; H, 7.05; N, 4.75. C₂₈H₃₃NO₅ requires: C, 72.55; H, 7.18; N, 3.02.) v_{max} (KBr) 2966, 1746 (C=O), 1604, 1581, 1456, 1417, 1340, 1234, 1209, 1162, 1128, 1072, 900, 876, 820, 764 cm⁻

5.9.4.1. NMR data for the major (1R,3R,4S,4'R)-isomer **23f.** ¹H NMR (CDCl₃): δ 0.61, 0.84, 0.96 (9H, 3s, 1:1:1, $3 \times Me$); 1.63–1.92 (3H, m, 3H of CH₂); 2.08 (3H, s, Me);

2.31–2.41 (2H, m, 1H of CH₂, H–C(4)); 3.68, 3.73 (9H, 2s, 2:1, $3 \times OMe$); 5.14 (1H, s, H–C(4')); 5.95 (2H, s, C₆H₂); 6.92–6.96, 7.00–7.06, 7.09–7.14 and 7.22–7.25 (4H, 4m, 1:1:1:1, C₆H₄). ¹³C NMR (CDCl₃): δ 10.1, 19.1, 19.5, 21.7, 21.8, 31.7, 44.0, 50.0, 55.6, 56.5, 56.6, 58.6, 91.2, 91.3, 100.9, 125.5, 127.5, 130.4, 132.1, 134.4, 136.2, 156.5, 160.3, 162.6, 215.6.

5.9.4.2. NMR data for the minor (1R,3S,4S,4'S)-isomer **23'f.** ¹H NMR (CDCl₃): δ 0.57, 0.83 (6H, 2s, 1:1, 2 × Me); 3.75 (6H, s, 2 × OMe); 5.03 (1H, s, H–C(4')); 5.99 (2H, s, C₆H); 6.84–6.87 (1H, m, 1H of C₆H₄).

5.9.5. (1R,3R,4S,4'R)-4'-(4-Methylphenyl)-3'-(2,4,6-trimethoxyphenyl)-1,7,7-trimethyl-4'H-spiro[bicyclo[2.2.1]-heptane-3,5'-isoxazol]-2-one 23g and its <math>(1R,3S,4S,4'S)-isomer 23'g. Prepared from 8g (0.254 g, 1 mmol) and 18a (0.251 g, 1.2 mmol); 23g:23'g = 95:5 (90% de); CC (EtOAc-hexanes, 1:2) and MPLC (EtOAc-hexanes, 1:3). Yield: 107 mg (23%) of a white solid; 23g:23'g = 95:5 (90% de). Repeated crystallisation from CHCl₃-*n*-heptane furnished diastereomerically pure compound 23g.

5.9.5.1. Data for major (1R, 3R, 4S, 4'R)-isomer 23g. Yield: 0.033 g (7%) of a white solid; mp 205-208 °C; **23g**:**23**'g = 100:0 (100% de); $[\alpha]_D^{19} = -496.4$ (*c* 0.14, CHCl₃). *m/z* (EI) = 463 (M⁺); *m/z* (HRMS) found: $(M^+); C_{28}H_{33}NO_5$ requires: 463.237020 m/z =463.235874. ¹H NMR (CDCl₃): δ 0.70, 0.83, 0.95 (9H, 3s, 1:1:1, 3 × Me); 1.62–1.87 (3H, m, 3H of CH₂); 2.01 (1H, d, J = 3.4 Hz, H–C(4)); 2.23–2.33 (1H, m, 1H of CH₂); 2.26 (3H, s, Me); 3.72, 3.74 (9H, 2s, 1:2, 3×OMe); 4.78 (1H, s, H-C(4')); 5.98 (2H, s, C₆H₂); 6.90-7.05 (4H, m, C_6H_4). ¹³C NMR (CDCl₃): δ 10.0, 19.0, 21.5, 21.7, 22.5, 31.5, 44.0, 49.7, 55.6, 56.6, 58.6, 61.4, 91.0, 91.6, 101.2, 129.0, 130.5, 133.0, 137.3, 156.3, 160.4, 162.5, 215.5 (Found: C, 72.07; H, 7.18; N, 4.10. C₂₈H₃₃NO₅ requires: C, 72.55; H, 7.18; N, 3.02.) v_{max} (KBr) 2954, 1751 (C=O), 1608, 1583, 1455, 1405, 1340, 1322, 1220, 1203, 1180, 1155, 1130, 1022, 908, 876, 838, 811, 782 cm⁻¹

5.9.5.2. Data for minor (1*R*,3*S*,4*S*,4'*S*)-isomer 23'g. ¹H NMR (CDCl₃): δ 0.91, 0.98, 1.21 (9H, 3s, 1:1:1, 3 × Me); 3.69, 3.73 (9H, 2s, 2:1, 3 × OMe); 4.59 (1H, s, H–C(4')); 7.06–7.10 (2H, m, 2H of C₆H₄).

5.9.6. (1R,3R,4S,4'R)-4'-(4-Fluorophenyl)-3'-(2,4,6-trimethoxyphenyl)-1,7,7-trimethyl-4'*H*-spiro[bicyclo]2.2.1]heptane-3,5'-isoxazol]-2-one 23h and its (1R,3S,4S,4'S)-isomer 23'h. Prepared from compound 8h (0.258 g, 1 mmol) and 18a (0.251 g, 1.2 mmol); 23h:23'h = 94:6 (88% de); CC and MPLC (EtOAc-hexanes, 1:2). Yield: 131 mg (28%) of a white solid; 23h:23'h = 96:4 (92% de). Repeated crystallisation from EtOAc-*n*-hexane furnished diastereomerically pure compound 23h.

5.9.6.1. Data for major (1R,3R,4S,4'R)-isomer 23h. Yield: 56 mg (12%) of a white solid; mp 204–207 °C; **23h:23'h** = 100:0; $[\alpha]_D^{21} = -469.9$ (*c* 0.16, CHCl₃). *m/z* (EI) = 467 (M⁺); *m/z* (HRMS) found: 467.211950 (M⁺); C₂₇H₃₀FNO₅ requires: *m/z* = 467.210802. ¹H NMR (CDCl₃): δ 0.69, 0.84, 0.95 (9H, 3s, 1:1:1, 3 × Me); 1.64– 1.88 (3H, m, 3H of CH₂); 1.99 (1H, d, J = 3.4 Hz, H–C(4)); 2.24–2.34 (1H, m, 1H of CH₂); 3.74, 3.75 (9H, 2s, 1:2, 3 × OMe); 4.79 (1H, s, H–C(4')); 5.98 (2H, s, C₆H₂); 6.86–6.94 (2H, m, 2H of C₆H₄); 7.06 (2H, br s, 2H of C₆H₄). ¹³C NMR (CDCl₃): δ 10.0, 19.0, 21.7, 22.5, 31.4, 44.0, 49.7, 55.6, 56.6, 58.6, 61.1, 90.9, 91.5, 100.7, 115.2 (d, J = 84.5 Hz), 132.0 (d, J = 13.7 Hz), 132.2 (d, J = 32.0 Hz), 156.1, 160.4, 162.5 (d, J = 980.5 Hz), 162.7, 215.1 (Found: C, 69.80; H, 6.67; N, 3.07. C₂₇H₃₀FNO₅ requires: C, 69.36; H, 6.47; N, 3.00.) v_{max} (KBr) 2974, 1749 (C=O), 1603, 1586, 1508, 1458, 1410, 1346, 1231, 1220, 1207, 1158, 1132, 1021, 850, 810 cm⁻¹.

5.9.6.2. Data for minor (1*R*,3*S*,4*S*,4'*S*)-isomer 23'h. ¹H NMR (CDCl₃): δ 0.93, 0.99, 1.22 (9H, 3s, 1:1:1, 3 × Me); 4.59 (1H, s, H–C(4')).

5.9.7. (1*S*,3*S*,4*R*,4'*S*)-4'-(4-Fluorophenyl)-3'-(2,4,6-trimethoxyphenyl)-1,7,7-trimethyl-4'*H*-spiro[bicyclo[2.2.1]heptane-3,5'-isoxazol]-2-one *ent*-23h and its (1*S*,3*R*,4*R*,4'*R*)-isomer *ent*-23'h. Prepared from compound *ent*-8h (0.258 g, 1 mmol) and 18a (0.251 g, 1.2 mmol); *ent*-23h:*ent*-23'h = 96:4 (92% de); CC and MPLC (EtOAc-hexanes, 1:2). Yield: 136 mg (29%) of a white solid; *ent*-23h:*ent*-23'h = 97:3 (94% de). Repeated crystallisation from EtOAc-*n*-hexane furnished diastereomerically pure compound *ent*-23h.

5.9.7.1. Data for major (1*S*,3*S*,4*R*,4'*S*)-isomer *ent*-**23h.** Yield: 0.054 g (11%) of a white solid; mp 204–207 °C; *ent*-**23h**:*ent*-**23'h** = 100:0 (100% de); $[\alpha]_D^{21} = +498.9$ (*c* 0.09, CHCl₃). *m/z* (EI) = 467 (M⁺); *m/z* (HRMS) found: 467.211500 (M⁺); C₂₇H₃₀FNO₅ requires: *m/z* = 467.210802 (Found: C, 69.40; H, 6.56; N, 4.05. C₂₇H₃₀FNO₅ requires: C, 69.36; H, 6.47; N, 3.00.). ¹H NMR and IR spectral data for *ent*-**23h** were identical to the data for the (1*R*,3*R*,4*S*,4'*R*)-enantiomer **23h** (see Section 5.9.6.1).

5.9.7.2. NMR data for minor (1S,3R,4R,4'R)-isomer *ent*-23'h. ¹H NMR data for *ent*-23'h were identical to the data for the (1R,3S,4S,4'S)-enantiomer 23'h (see Section 5.9.6.2).

5.9.8. (1*R*,3*R*,4*S*,4′*R*)-4′-[3,5-Bis(trifluoromethyl)phenyl]-3′-(2,4,6-trimethoxyphenyl)-1,7,7-trimethyl-4′*H*-spiro[bicyclo-[2.2.1]heptane-3,5′-isoxazol]-2-one 23i and its (1*R*,3*S*, 4*S*,4′*S*)-isomer 23′i. Prepared from 8i (0.376 g, 1 mmol) and 18a (0.251 g, 1.2 mmol); first CC (EtOAc–hexanes, 1:2); 23i:23′i = 94:6 (88% de); second CC (CHCl₃–MeOH, 100:1). Yield: 0.352 g (60%) of a greyish semisolid; 23i:23′i = 93:7 (86% de); mp 64–70 °C; $[\alpha]_D^{21} = -309.3$ (*c* 0.162, CHCl₃). *m*/*z* (EI) = 585 (M⁺); *m*/*z* (HRMS) found: 585.196520 (M⁺); C₂₉H₂₉F₆NO₅ requires: *m*/*z* = 585.194993 (Found: C, 60.38; H, 5.48; N, 2.28. C₂₉H₂₉-F₆NO₅ requires: C, 59.49; H, 4.99; N, 2.39.) ν_{max} (KBr) 2965, 1752 (C=O), 1605, 1585, 1468, 1458, 1416, 1376, 1341, 1278, 1230, 1207, 1131, 1034, 947, 911, 877, 831, 814, 710, 681 cm⁻¹.

5.9.8.1. NMR data for the major (1R,3R,4S,4'R)-isomer **23i.** ¹H NMR (CDCl₃): δ 0.70, 0.86, 0.97 (9H, 3s, 1:1:1,

 $3 \times$ Me); 1.66–1.90 (4H, m, 3H of CH₂, H–C(4)); 2.28– 2.35 (1H, m, 1H of CH₂); 3.74 and 3.76 (9H, 2s, 1:2, $3 \times$ OMe); 4.94 (1H, s, H–C(4')); 5.99 (2H, s, C₆H₂); 7.57 (2H, br s, 2H of C₆H₃); 7.73 (1H, br s, 1H of C₆H₃). ¹³C NMR (CDCl₃): δ 9.9, 18.9, 21.7, 22.6, 31.1, 44.2, 49.7, 55.6, 56.3, 58.7, 61.1, 91.0, 91.2, 99.4, 121.9–122.1 (m), 123.5 (q, J = 1085.7 Hz), 130.7 (br s), 131.7 (q, J = 134.8 Hz), 139.1, 155.2, 160.3, 163.1, 213.9.

5.9.8.2. NMR data for the minor (1R, 3S, 4S, 4'S)-isomer **23'i.** ¹H NMR (CDCl₃): δ 0.94, 1.01 (6H, 2s, 1:1, 2 × Me); 4.72 (1H, s, H–C(4')).

5.9.9. (1*R*,3*R*,4*S*,4′*R*)-4′-(2-Methylphenyl)-1,7,7-trimethyl-3′-(2,4,6-trimethylphenyl)-4′*H*-spiro[bicyclo]2.2.1]heptane-3,5′-isoxazol]-2-one 24f and its (1*R*,3*S*,4*S*,4′*S*)-isomer 24′f. Prepared from compound 8f (0.254 g, 1 mmol) and 18b (0.194 g, 1.2 mmol); 24f:24′f = 96:4 (92% de); first CC (CHCl₃-MeOH, 300:1 \rightarrow 100:1), second CC (EtOAchexanes, 1:10). Yield: 37 mg (9%) of a white solid; 24f:24′f = 96:4 (92% de). Repeated crystallisation from CHCl₃-*n*-heptane furnished diastereomerically pure compound 24f.

5.9.9.1. Data for major (1R, 3R, 4S, 4'R)-isomer 24f. Yield: 0.015 g (3%) of a white solid; mp 223-226 °C; **24f**:**24**'**f** = 100:0 (100% de); $[\alpha]_{D}^{21} = -534.4$ (*c* 0.28, CHCl₃). *m*/*z* (EI) = 415 (M⁺); *m*/*z* (HRMS) found: $(M^+); C_{28}H_{33}NO_2$ 415.252350 requires: m/z =415.251130. ¹H NMR (CDCl₃): δ 0.66, 0.88, 0.97 (9H, 3s, 1:1:1, 3 × Me); 1.70–1.94 (3H, m, 3H of CH₂); 1.96, 2.18 (6H, 2s, 1:1, $2 \times Me$); 2.21 (6H, br s, $2 \times Me$); 2.32–2.43 (1H, m, 1H of CH₂); 2.49 (1H, d, J = 3.8 Hz, H–C(4)); 4.79 (1H, s, H–C(4')); 6.71 (2H, s, C_6H_2); 6.96–6.99, 7.09-7.14, 7.17-7.22 and 7.34-7.37 (4H, 4m, 1:1:1:1, C_6H_4). ¹³C NMR (CDCl₃): δ 10.0, 19.0, 19.8, 20.5, 21.4, 21.6, 21.8, 31.8, 44.0, 49.7, 57.5, 58.8, 91.8, 125.5, 126.0, 128.2, 128.9, 131.0, 131.9, 133.3, 136.3, 138.1, 138.9, 161.7, 216.0 (Found: C, 80.97; H, 8.08; N, 3.60. C₂₈H₃₃NO₂ requires: C, 80.93; H, 8.00; N, 3.37.) v_{max} (KBr) 2962, 1744 (C=O), 1610, 1469, 1448, 1393, 1374, 1306, 1285, 1103, 1029, 903, 875, 856, 837, 757 cm⁻¹

5.9.9.2. Data for minor (1R,3S,4S,4'S)-isomer 24'f. ¹H NMR (CDCl₃): δ 0.96, 1.01 (6H, 2s, 1:1, 2 × Me); 4.66 (1H, s, H–C(4')); 7.56–7.60 (1H, m, 1H of C₆H₄).

5.9.10. (1R,3R,4S,4'R)-4'-(4-Fluorophenyl)-1,7,7-trimethyl-3'-(2,4,6-trimethylphenyl)-4'*H*-spiro[bicyclo]2.2.1]heptane-3,5'-isoxazol]-2-one 24h and its (1R,3S,4S,4'S)-isomer 24'h. Prepared from compound 8h (0.258 g, 1 mmol) and 18b (0.194 g, 1.2 mmol); 24h:24'h = 93:7 (86% de); CC (EtOAc-hexanes, 1:15) and MPLC (EtOAc-hexanes, 1:13). Yield: 17 mg (4%) of a white solid; 24h:24'h = 99:1 (98% de). Repeated crystallisation from CHCl₃-*n*-heptane furnished diastereomerically pure compound 24h.

5.9.10.1. Data for major (1R,3R,4S,4'R)-isomer **24h.** Yield: 0.007 g (1.5%) of a white solid; mp 196– 208 °C; **24h:24**'h = 100:0 (100% de); $[\alpha]_{\rm D}^{21} = -509.7$ (*c* 0.06, CHCl₃). *m/z* (EI) = 419 (M⁺); *m/z* (HRMS) found: 419.227320 (M⁺); C₂₇H₃₀FNO₂ requires: *m/z* = 419.226058. ¹H NMR (CDCl₃): δ 0.67, 0.87, 0.96 (9H, 3s, 1:1:1, 3 × Me); 1.69–1.92 (3H, m, 3H of CH₂); 2.18 (3H, s, Me); 2.20 (1H, d, *J* = 3.8 Hz, H–C(4)); 2.28–2.40 (1H, m, 1H of CH₂); 2.29 (6H, s, 2 × Me); 4.47 (1H, s, H × C(4')); 6.74 (2H, s, C₆H₂); 6.92–6.98 (2H, m, 2H of C₆H₄); 7.02–7.10 (2H, m, 2H of C₆H₄). ¹³C NMR (CDCl₃): δ 9.9, 19.0, 21.0, 21.3, 21.8, 22.1, 31.5, 44.1, 49.6, 58.8, 62.1, 91.5, 115.9 (d, *J* = 86.9 Hz), 125.2, 129.3, 130.9 (d, *J* = 13.7 Hz), 132.1 (d, *J* = 32.0 Hz), 138, 139.1, 161.2, 162.8 (d, *J* = 985.1 Hz), 215.5 (Found: C, 77.50; H, 7.24; N, 3.65. C₂₇H₃₀FNO₂ requires: C, 77.30; H, 7.21; N, 3.34.) v_{max} (KBr) 2972, 1746 (C=O), 1604, 1509, 1455, 1396, 1374, 1309, 1224, 1163, 1101, 1024, 911, 844, 796 cm⁻¹.

5.9.10.2. Data for minor (1R, 3S, 4S, 4'S)-isomer 24'h. ¹H NMR (CDCl₃): δ 4.34 (1H, s, H–C(4')).

5.9.11. (1R,3R,4S,4'R)-4'-[3,5-Bis(trifluoromethyl)phenyl]-1,7,7-trimethyl-3'-(2,4,6-trimethyl-phenyl)-4'H-spiro[bicyclo-[2.2.1]heptane-3,5'-isoxazol]-2-one 24i and its <math>(1R,3S,4S, 4'S)-isomer 24'i. Prepared from compound 8i (0.376 g, 1 mmol) and 18b (0.194 g, 1.2 mmol); 24i:24'i = 93:7 (86% de); CC and MPLC (EtOAc-hexanes, 1:30) afforded diastereomerically pure compound 24i.

5.9.11.1. Data for major (1R,3R,4S,4'R)-isomer 24i. Yield: 92 mg (17%) of a white solid; mp 147–155 °C; **24i**:24'i = 100:0 (100% de); $[\alpha]_D^{21} = -401.1$ (*c* 0.09, CHCl₃). *m/z* (EI) = 537 (M⁺); *m/z* (HRMS) found: 537.212020 (M⁺); C₂₉H₂₉F₆NO₂ requires: *m/z* = 537.210249. ¹H NMR (CDCl₃): δ 0.67, 0.89, 0.98 (9H, 3s, 1:1:1, 3 × Me); 1.71–1.94 (4H, m, 3H of CH₂, H–C(4)); 2.19, 2.31 (9H, 2s, 1:2, 3 × Me); 2.29–2.43 (1H, m, 1H of CH₂); 4.63 (1H, s, H–C(4')); 6.76 (2H, s, C₆H₂); 7.52 (2H, br s, 2H of C₆H₃); 7.79 (1H, s, 1H of C₆H₃). ¹³C NMR (CDCl₃): δ 9.8, 18.9, 20.9, 21.3, 21.8, 22.2, 31.2, 44.3, 49.6, 58.9, 62.1, 91.6, 122.5–122.7 (m), 123.3 (q, *J* = 1085.7 Hz), 124.4, 129.6, 130.2–130.4 (m), 132.3 (q, *J* = 132.6 Hz), 137.8, 138.1, 139.6, 160.3, 214.3 (Found: C, 64.78; H, 5.40; N, 2.83. C₂₉H₂₉F₆NO₂ requires: C, 64.80; H, 5.44; N, 2.61.) ν_{max} (KBr) 2979, 1754 (C=O), 1613, 1455, 1395, 1374, 1276, 1179, 1133, 1107, 1032, 903, 874, 859, 830 cm⁻¹.

5.9.11.2. Data for minor (1*R*,3*S*,4*S*,4'*S*)-isomer 24'i. ¹H NMR (CDCl₃): δ 4.49 (1H, s, H–C(4')).

5.10. X-ray structural analysis for compounds 8h, 19, 22b, 23a, 23f, 23g, *ent*-23h and 24h

Single crystal X-ray diffraction data of compounds **8h**, **19**, **22b**, **23a**, **23f**, **23g**, *ent*-**23h** and **24h** were collected at room temperature on a Nonius Kappa CCD diffractometer using the Nonius Collect Software.⁵⁸ DENZO and SCALE-PACK⁵⁹ were used for indexing and scaling of the data and the structures were solved by means of SIR97.⁶⁰ Refinement was done using Xtal3.4⁶¹ program package and the crystallographic plots were prepared by ORTEP III.⁶² Crystal structures were refined on *F* values using the full-matrix least-squares procedure. The non-hydrogen atoms were refined anisotropically in all cases, while the

positions of the hydrogen atoms were geometrically calculated and their positional and isotropic atomic displacement parameters not refined. Absorption correction was not necessary. Regina⁶³ weighting scheme was used in all cases.

Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC 289084, 289085 and 299415–299420. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK [fax: +44(0) 1223 336033 or e-mail: deposit@ccdc.cam.ac.uk].

Acknowledgements

Financial support from the Slovenian Research Agency, Slovenia, through grants P0-0502-0103, P1-0179 and J1-6689-0103-04 is gratefully acknowledged.

We acknowledge with thanks the financial support from pharmaceutical companies Krka d.d. (Novo mesto, Slovenia) and Lek d.d., a new Sandoz company (Ljubljana, Slovenia), and Boehringer-Ingelheim Pharma (Biberach, Germany).

The authors wish to express their gratitude to the Alexander von Humboldt Foundation, Germany, for the donation of a Büchi medium pressure liquid chromatograph.

Crystallographic data were collected on the Kappa CCD Nonius diffractometer in the Laboratory of Inorganic Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia. We acknowledge with thanks the financial contribution of the Ministry of Science and Technology, Republic of Slovenia, through grant Packet X-2000 and PS-511-102, which thus made the purchase of the apparatus possible.

References

- 1. Money, T. Nat. Prod. Rep. 1985, 253-289.
- 2. Oppolzer, W. Tetrahedron 1987, 43, 1969-2004.
- 3. Oppolzer, W. Pure Appl. Chem. 1990, 62, 1241-1250.
- 4. Money, T. In *Remote Functionalization of Camphor: Appli*cation to Natural Product Synthesis. In Organic Synthesis: Theory and Applications; JAI Press, 1996; Vol. 3, pp 1–83.
- 5. Bishop, A. W.; Claisen, L. Chem. Ber. 1889, 22, 533-537.
- Schenone, P.; Minardi, G. Farmaco, Ed. Sci. 1962, 17, 291– 307.
- 7. Minardi, G.; Schenone, P. Farmaco, Ed. Sci. 1970, 25, 519– 532.
- Schenone, P.; Tasca, A. Boll. Chim. Farm. 1971, 110, 690– 694.
- 9. Stanovnik, B. J. Heterocycl. Chem. 1999, 36, 1581-1593.
- 10. Stanovnik, B.; Svete, J. *Targets Heterocycl. Syst.* 2000, *4*, 105–137.
- 11. Stanovnik, B.; Svete, J. Synlett 2000, 1077-1091.
- 12. Svete, J. J. Heterocycl. Chem. 2002, 39, 437-454.
- 13. Stanovnik, B.; Svete, J. Chem. Rev. 2004, 104, 2433–2480, and references cited therein.
- 14. Svete, J. Monatsh. Chem. 2004, 135, 629-647.
- 15. Pizzioli, L.; Ornik, B.; Svete, J.; Stanovnik, B. Helv. Chim. Acta 1998, 81, 231–235.

- Bratušek, U.; Meden, A.; Svete, J.; Stanovnik, B. ARKIVOC 2003, Part v, 77–86.
- Škof, M.; Svete, J.; Stanovnik, B.; Golič, L.; Golič Grdadolnik, S.; Selič, L. *Helv. Chim. Acta* **1998**, *81*, 2332–2340.
- Grošelj, U.; Drobnič, A.; Rečnik, S.; Svete, J.; Stanovnik, B.; Golobič, A.; Lah, N.; Leban, I.; Meden, A.; Golič-Grdadolnik, S. *Helv. Chim. Acta* 2001, *84*, 3403–3417.
- Škof, M.; Pirc, S.; Rečnik, S.; Svete, J.; Stanovnik, B.; Golič, L.; Selič, L. J. Heterocycl. Chem. 2002, 39, 957–963.
- Pirc, S.; Rečnik, S.; Škof, M.; Svete, J.; Golič, L.; Meden, A.; Stanovnik, B. J. Heterocycl. Chem. 2002, 39, 411–416.
- 21. Grošelj, U.; Rečnik, S.; Svete, J.; Meden, A.; Stanovnik, B. *Tetrahedron: Asymmetry* **2002**, *13*, 821–833.
- Grošelj, U.; Bevk, D.; Jakše, R.; Meden, A.; Pirc, S.; Rečnik, S.; Stanovnik, B.; Svete, J. *Tetrahedron: Asymmetry* 2004, 15, 2367–2383.
- Grošelj, U.; Bevk, D.; Jakše, R.; Meden, A.; Stanovnik, B.; Svete, J. *Tetrahedron: Asymmetry* 2005, 16, 2927–2945.
- Grošelj, U.; Bevk, D.; Jakše, R.; Meden, A.; Stanovnik, B.; Svete, J. *Tetrahedron: Asymmetry* 2006, 17, 79–91.
- 25. Grošelj, U.; Bevk, D.; Jakše, R.; Rečnik, S.; Meden, A.; Stanovnik, B.; Svete, J. *Tetrahedron* **2005**, *61*, 3991–3998.
- Grošelj, U.; Bevk, D.; Jakše, R.; Meden, A.; Rečnik, S.; Stanovnik, B.; Svete, J. Synthesis 2005, 1087–1094.
- Grošelj, U.; Bevk, D.; Jakše, R.; Pirc, S.; Stanovnik, B.; Svete, J.; Meden, A. *Tetrahedron: Asymmetry* 2005, 16, 2187– 2197.
- Bishop, A. W.; Claisen, L.; Sinclair, W. Liebigs Ann. Chem. 1894, 281, 314–398.
- Svete, J.; Kralj, L.; Stanovnik, B. Acta Chim. Slov. 1995, 42, 231–248.
- McClure, N. L.; Dai, G.-Y.; Mosher, H. S. J. Org. Chem. 1988, 53, 2617–2620.
- 31. Richer, J.-C.; Rossi, A. Can. J. Chem. 1972, 50, 1376-1385.
- 32. Van Toan, V.; Lightner, D. A. *Tetrahedron* **1987**, *43*, 5769–5774.
- 33. Nevalainen, M.; Nevalainen, V. Tetrahedron: Asymmetry 2001, 12, 1771–1777.
- Oppolzer, W.; Chapius, C. Tetrahedron Lett. 1984, 25, 5383– 5386.
- 35. Gianini, M.; von Zelevsky, A. Synthesis 1996, 702-706.
- Nevalainen, V.; Sylvestre, D. PCT Int. Appl. WO 00 26,190, 2000; . Chem. Abstr. 2000, 132, 321804e.
- 37. Bax, A.; Freeman, R. J. Am. Chem. Soc. 1982, 104, 1099-1100.
- 38. Titman, J. J.; Foote, J.; Jarvis, J.; Keeler, J.; Neuhaus, D. J. *Chem. Soc., Chem. Commun.* **1991**, 419–421.
- Ando, T.; Koseki, N.; Toia, R. F.; Casida, J. E. Magn. Reson. Chem. 1993, 31, 90–93.

- Fischer, P.; Schweizer, E.; Langner, J.; Schmidt, U. Magn. Reson. Chem. 1994, 32, 567–568.
- 41. Willker, W.; Leibfritz, D. Magn. Reson. Chem. 1995, 33, 632–638.
- 42. Golič Grdadolnik, S.; Stanovnik, B. Magn. Reson. Chem. 1997, 35, 482–486.
- 43. Osz, E.; Szilágyi, L.; Marton, J. J. Mol. Struct. 1998, 442, 267–274.
- 44. Furihata, K.; Seto, H. Tetrahedron Lett. 1999, 40, 6271-6275.
- 45. Seki, H.; Tokunaga, T.; Utsumi, H.; Yamaguchi, K. Tetrahedron 2000, 56, 2935–2939.
- 46. Tokunaga, T.; Seki, H.; Yasuike, S.; Ikoma, M.; Kurita, J.; Yamaguchi, K. *Tetrahedron Lett.* **2000**, *41*, 1031–1034.
- 47. Ding, K. Magn. Reson. Chem. 2000, 38, 321-323.
- 48. Karplus, M. J. Chem. Phys. 1959, 30, 11.
- Meinwald, J.; Lewis, A. J. Am. Chem. Soc. 1961, 83, 2769– 2770.
- 50. Abraham, R. J.; Fisher, J. Magn. Reson. Chem. 1985, 23, 862-871.
- 51. Abraham, R. J.; Fisher, J. Magn. Reson. Chem. 1986, 24, 451-459.
- Huisgen, R.; Grashey, R.; Seidel, M.; Wallbillich, G.; Knupfer, H.; Schmidt, R. Liebigs Ann. Chem. 1962, 653, 105–113.
- 53. Huisgen, R.; Seidel, M.; Wallbillich, G.; Knupfer, H. *Tetrahedron* **1962**, *17*, 3–29.
- 54. Rupe, H.; Iselin, M. Chem. Ber. 1916, 49, 25-50.
- 55. Rupe, H.; Courvoisier, C. Helv. Chim. Acta 1923, 6, 1049– 1071.
- Kossanyi, J.; Furth, B.; Morizur, J. P. *Tetrahedron* 1970, 26, 395–405.
- 57. El Batouti, N.; Sotiropoulos, J. C. R. Acad. Sci., Ser. C 1974, 278, 1109–1112.
- 58. Collect Software. Nonius, BV, Delft, The Netherlands, 1998.
- 59. Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307–326.
- Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 1999, 32, 115.
- 61. Hall, S. R.; King, G. S. D.; Stewart, J. M. The Xtal3.4 User's Manual, University of Western Australia, Lamb, Perth, 1995.
- Burnett, M. N.; Johnson, C. K. In ORTEP-III: Oak Ridge Thermal Ellipsoid Plot Program for Crystal Structure Illustrations, Oak Ridge National Laboratory Report ORNL-6895, 1996.
- 63. Wang, H.; Robertson, B. E. In *Structure and Statistics in Crystallography*; Wilson, A. J. C., Ed.; Adenine Press: New York, 1985.